一、智能感知的特点?
智能感知技术特点:
1.自动插入结束标记、右大括号和值引用。
2.上下文相关的快捷菜单,列出与代码中的当前点兼容的代码,并且可以插入这些代码
3.上下文相关的屏幕提示,列出与代码中的当前点兼容的变量、函数或参数。
3.代码超链接,单击这些指向类、外部 CSS 文件和脚本函数的超链接或引用可以打开或转到这些项的来源。
二、智能感知的概念?
感知智能即视觉、听觉、触觉等感知能力。人和动物都具备,能够通过各种智能感知能力与自然界进行交互。
感知智能是指将物理世界的信号通过摄像头、麦克风或者其他传感器的硬件设备,借助语音识别、图像识别等前沿技术,映射到数字世界,再将这些数字信息进一步提升至可认知的层次,比如记忆、理解、规划、决策等等。而在这个过程中,人机界面的交互至关重要。
三、智能感知的意义
智能制造经常提的那一套说法,第一步就是智能感知。这个东西说多了,有时候就容易忽视其中内在的本意,所以说,想细究智能感知这个事情。
(1)感知的核心是对生产异常或问题的感知
制造运行是一个系统性关联的运行,一般意义上来说,很难说制造系统运行能够按照我们预定的方式持续稳定的完成运行,其中必然会出现各种各样的突发事件或者生产扰动。所以我感觉所谓的感知,很大程度上是对生产异常的感知。
(2)智能性主要体现在时间和关联两个维度
如果等到生产异常发生了,制造系统感知到这种异常,其实这是一种事后的。在这种情况下,我们一般按照一个既定的流程进行处理,其实就可以,这个其实称不上什么智能的。因此,从时间维度上面来说,智能感知的智能性应该体现在事先。
从制造运行各个环节所产生的这种状态。一般来说都是相对孤立的,或者说我们是一个一个上来的。但是由于制造系统的运行是属于关联性比较强的那种方式,因此这些独立环节之间的状态关联,综合起来对于制造系统运行可能会产生影响。因此,相对于单一环节单一状态的显式感知,这种多环节多状态关联的隐式感知是智能性的集中体现。
(3)智能感知需要系统性的思维
一般来说我们做事情都是希望这个事情在自己的一个严谨严密的体系下面,也就是说是希望能够预先知道要感知哪些东西。虽然现在有所谓的大数据分析,能够发现一些之前难以明显感知到的那种规律或者规则,但这个毕竟可操作性不强。我认为这个方面的系统性思维主要体现为可靠性制造运行整体思维。
应该立足于形成制造系统运行的可靠性思维,建立业务运行的关联因素图谱,可以采用各种现成的分析工具,甚至可靠性工程中那种FMEA、故障分析树及其求解方法(例如求解最小割集等),都可以拿来用。
四、什么是感知智能?
感知智能既视觉,听觉,触觉等感知能力
五、感知智能是由谁提出的?
是全国政协副主席、中国科协主席万钢在第五届世界智能大会上作出的判断。
六、计算智能和感知智能的关键技术?
计算智能、感知智能、认知智能。计算智能,即机器“能存会算”的能力;感知智能,即机器具有“能听会说、能看会认”的能力,主要涉及语音合成、语音识别、图像识别、多语种语音处理等技术;认知智能,即机器具有“能理解会思考”的能力,主要涉及教育评测、知识服务、智能客服、机器翻译等技术。
七、什么是智能视觉感知?
智能视觉感知是让视觉系统中融合AIS数据,雷达数据和电子海图数据,为船舶自主航行提供感知能力,让动力系统数据和感知数据自由交互,为船舶在海上自由航行提供安全保障。
作为一个兼容性极强的平台,智能视觉感知系统还可以接入雷达、声呐、AIS、GPS等用于海上导航的各类工具系统。
针对海事领域,快速发现并满足游船游艇、商船、工作艇、渔船、游轮及其他多种船型的各种需求。
智能视觉感知能够在任何状况下进行辅助导航,侦测其它船舶,协助船外搜索,确保海港和公开水域(反海盗)的船只安全,以及清晰掌控黑暗中的一切行动。
智能视觉感知在海洋环境中的应用高效实用,能够满足以下客户需求:
港口、航道以及沿海安全、海事安全、海上非法入境侦测、海上执法、反海盗与威胁探测、渔船队保护、船舶跟踪与观察、搜索救援行动、环境保护。
即便是雷达系统无法探测到的物体,如帆船、木船及漂浮物等,均难逃“火眼”。
八、智能感知与人工智能的区别?
人工智能分为智能感知和智能服务两大部分。智能感知是人工智能的组成部分,即视觉、听觉、触觉等感知能力,包括计算机视觉、语音识别、智能分析、医疗服务。智能服务包括:安防、无人驾驶、机器人等。经过多年的人工智能研究,人工智能的主要发展方向:运算智能、感知智能、认知智能,这一观点如今已得到业界的广泛认可。
九、智能感知工程是干嘛的?
是培养具备良好思想道德与文化素养、身心素质、敬业精神和社会责任感的创新型人才。同时培养能够解决互联网、智能制造、智能健康、智能交通、航空航天、国防军工等行业复杂工程问题的复合型高级工程技术人才
十、智能城市 自动驾驶
智能城市和自动驾驶:未来城市发展的关键
随着科技的迅猛发展,智能城市和自动驾驶成为了人们关注的焦点。智能城市以人工智能技术为基础,通过互联网和物联网的连接,改善了城市的管理和生活品质。而自动驾驶技术的出现,则为交通行业带来了革命性的变化。
智能城市的发展
智能城市的核心理念是利用人工智能和信息技术来提高城市的效率和可持续性。通过将各种设备和系统连接起来,智能城市可以实现实时监控和数据共享,从而提供更优质的城市服务。
智能城市的建设需要依靠先进的技术设备,例如感知器、传感器和网络互连设备。这些设备能够收集各种数据,例如交通流量、空气质量和垃圾管理情况。通过分析这些数据,城市管理者可以做出更明智的决策,改善居民的生活质量。
智能城市的一个重要领域是能源管理。通过智能电网和能源监控系统,城市可以更高效地管理能源分配和使用,减少能源浪费。智能照明系统可以根据需求智能调整照明亮度,减少能源消耗。而智能交通系统可以优化交通信号,减少交通堵塞和汽车排放。
另一个重要领域是智能安全。智能城市可以利用监控摄像头、人脸识别技术和大数据分析来提供更高效的安全监控和犯罪预防。例如,智能警务系统可以自动识别可疑行为并及时采取措施,提高城市的治安水平。
自动驾驶技术的突破
自动驾驶技术是智能城市中一个备受瞩目的领域。通过使用传感器、摄像头和雷达等设备,自动驾驶汽车可以实时感知周围环境,做出相应的驾驶决策。这种技术的出现将彻底改变交通行业的面貌。
自动驾驶技术有助于提高交通安全性。统计数据显示,绝大部分交通事故是由人为错误所致。而自动驾驶汽车不受疲劳、分心和情绪等因素的影响,可以更加准确地预测和避免潜在的危险。此外,自动驾驶汽车之间的通讯也可以实现更高效的交通协作,减少事故发生的可能性。
自动驾驶技术还对交通拥堵问题具有潜在的解决方案。通过智能交通管理系统的支持,自动驾驶汽车可以进行实时的路况预测和优化路径规划。这将有助于减少交通堵塞,提高道路的通行效率。
此外,自动驾驶技术还有助于提高交通效率和节能减排。自动驾驶汽车可以通过智能的加速和减速控制,避免过度的急转弯和燃油浪费。同时,自动驾驶汽车可以通过直接与智能交通信号互联,实现更精确的信号控制,减少交通停滞和排放。
智能城市与自动驾驶的挑战
尽管智能城市与自动驾驶技术带来了诸多优势,但也面临一些挑战。
首先,安全性是智能城市与自动驾驶技术发展的重要问题。智能城市和自动驾驶汽车都需要大规模的数据交换和处理,这涉及到个人隐私和网络安全的风险。因此,确保数据的安全传输和储存是至关重要的。
其次,智能城市和自动驾驶技术的发展需要依赖完善的基础设施和规划。例如,智能城市需要良好的网络覆盖和数据中心支持。而自动驾驶汽车需要配备先进的传感器和通信设备。这要求政府和企业在发展智能城市和自动驾驶技术方面投入大量的资金和资源。
此外,智能城市和自动驾驶技术的推广还需要解决法律和道德问题。例如,当自动驾驶汽车发生事故时,责任归属是一个重要的问题。同时,智能城市的运营涉及到对个人隐私的监控和数据收集,需要建立相应的法律和伦理框架。
结论
智能城市和自动驾驶技术将成为未来城市发展的关键。智能城市通过人工智能和信息技术的应用,实现了城市管理和生活品质的全面提升。自动驾驶技术彻底改变了交通行业的面貌,提高了交通安全性和效率。
然而,智能城市与自动驾驶技术的发展面临诸多挑战,如数据安全、基础设施建设和法律伦理等问题。解决这些问题需要政府、企业和社会各界的共同努力。
综上所述,智能城市与自动驾驶技术的发展将推动未来城市的进步,在提高居民生活质量和保护环境的同时,也带来了新的机遇和挑战。