一、济宁智能矿山机械哪个设计院设计的?
济宁智能矿山机械是济宁华矿设计院设计的。
二、智能矿山和智慧矿山区别?
智能矿山和智慧矿山是两个不同的概念。
智能矿山通常是指利用现代化技术,如自动化、传感器、数据分析等,来提高矿山生产效率和安全性的矿山。智能矿山可以通过实时监测和控制矿山设备和工艺流程来减少人工干预,提高生产效率并降低事故风险。
智慧矿山则更加注重利用信息技术来优化整个矿山的生产和管理。智慧矿山不仅包括智能化设备和流程,还包括数据采集、分析和应用,以及人工智能、云计算、物联网等技术的应用。通过对矿山生产过程中产生的大量数据进行深入分析,智慧矿山可以实现更加精细化的管理和优化,从而提高生产效率、降低成本、保障安全。
三、华为智能矿山介绍?
1 华为智能矿山是一种基于华为数字技术的智能化矿山解决方案。2 该解决方案利用华为的5G、云计算、物联网技术等,在矿山中实现了智能化的自动化、安全、高效管理,提高了矿山生产效率和安全性。3 除了智能化矿山解决方案,华为还提供矿山智能化应用平台,帮助矿山企业快速实现数字化转型,提升生产效益。
四、山西智能矿山标准?
3.1智能煤矿smart coal mine
将人工智能、工业物联网、云计算、大数据、机器人、智能装备等与现代煤炭开发利用深度融合,形成全面感知、实时互联、分析决策、自主学习、动态预测、协同控制的智能系统,实现煤矿开拓、采掘(剥)、运输、通风、安全保障、经营管理等过程的智能化运行。
3.2智能综采工作面smart mining face
应用人工智能、工业物联网、云计算、大数据等先进技术,使工作面采煤机、液压支架、输送机(含刮板式输送机、转载机、破碎机、可伸缩带式输送机)及电液动力设备等形成具有自主感知、自主决策和自动控制运行的智能系统,实现工作面落煤、支护、运煤作业工况自适应和工序协调控制。
4 缩略语
下列缩略语适用于本文件。
4G:第四代移动通信技术(The 4th generation mobile communication technology)
5G:第五代移动通信技术(5th-Generation)
AI:人工智能(Artificial Intelligence)
CAN:控制器域网(Controller Area Network)
EPA:开放性实时以太网标准(Ethernet for Plant Automation)
ERP:企业资源计划(Enterprise Resource Planning)
Ethernet/IP:以太网工业协议(Ethernet Industrial Protocol)
FF:基金会现场总线(Foudation Fieldbus)
LoRa:远距离无线电(Long Range Radio)
MA:煤矿安全认证(Mei An)
NFC:近距离无线通讯技术(Near Field Communication)
PROFIBUS:过程现场总线(Process Field Bus)
RAID5:分布式奇偶校验的独立磁盘结构(Redundant Arrays of Independent Disks 5)
RAM:随机存取存储器(Random Access Memory)
RFID:射频识别技术(Radio Frequency Identification)
RS485:异步通讯接口标准(Recommended Standard 485)
RTPS:实时传输协议(Real-time Transport Protocol)
Wi-Fi:无线保真(Wireless Fidelity)
ZigBee:短距离和低速率下无线通信技术(ZigBee Technology)
5 智能煤矿架构
智能煤矿建设以信息系统(含基础设施)为基础,以网络安全为保障,以数据平台为支撑,以地质保障、采掘系统、辅助生产系统、矿井安全、经营管理各个业务模块的智能化建设为主要内容,实现煤矿各要素和流程的全面感知、实时互联、分析决策、自主学习、动态预测、协同控制。
6 地质保障
6.1 矿井地理信息系统
6.1.1 应具有地质、测量、水文等各类图纸数字化管理系统。
6.1.2 应实现矿井资源/储量、可采煤层、断层构造、水文地质、瓦斯地质、工程地质、开采条件等应用可视化,指导优化矿井安全高效绿色建设与生产。
6.1.3 应创建高精度三维地质模型、超前识别地质构造、开采条件异常,为优化开采提供地质保障。
6.1.4 宜智能感知采掘过程中工程地质与标志地质的差异,自动优化高精度三维地质模型,实现数据与模型的双向联动。
6.2 探放水智能监测系统
应实现对探放水作业过程的钻孔数量、钻孔位置、钻孔角度、钻孔深度、终孔位置、钻杆钻进速度等钻孔数据的智能感知、分析、验收功能。
6.3 瓦斯抽采智能监测系统
应实现对瓦斯抽采作业过程的钻孔数量、钻孔位置、钻孔角度、钻孔深度、终孔位置、钻杆钻进速度,孔内压裂、割缝、造穴等特殊工艺间距、时间、质量,孔内筛管长度、封孔长度、质量,抽采率等数据的智能感知、分析、验收功能。
7 采掘系统
7.1 综采工作面
7.1.1 采煤机应具备滚筒截割路径记忆、位置定位、远程控制、姿态控制功能。
7.1.2 液压支架应配备电液控制系统,跟随采煤机在全工作面范围自动完成支架伸收护帮、移架、推溜、喷雾除尘等动作,应具备远程控制、支架全姿态监测功能。
7.1.3 刮板输送机应具有机尾链条自动张紧、断链实时监测报警上传、故障诊断,宜具有煤流负荷检测及其协同控制功能。
7.1.4 乳化液泵站应具有流量调节功能,实现高压自动反冲洗、自动配比补液,高低液位自动控制,实现对乳化液的浓度监测;工作面采用远距离集中供液方式为采区内主要设备供液,减少设备列车长度和重量,并可重复服务多个综采工作面。
7.1.5 综采工作面设备应配备矿压监测系统。
7.1.6 综采工作面设备应实现集中、就地和远程控制,实现采煤机、液压支架、刮板输送机协同控制,主要生产流程实现一键启停。
7.1.7 刮板输送机、采煤机、液压支架电液控制系统应配备自动找直功能。
7.1.8 超前支架、转载机自移装置、顺槽带式输送机自移机尾应配备遥控控制及远程控制功能。
7.1.9 应配备工作面视频系统。
7.1.10 应配备工作面自动巡检机器人,实现工作面设备运行状况、开采环境、煤流状态的例行巡检和异常情况实地巡查。
7.1.11 应配备工作面设备和人员精确定位系统。
7.1.12 应实现基于工作面精确三维地质模型的数字化割煤。
7.1.13 应实现工作面有人巡视、无人操作的远程可视化智能开采。
7.1.14 宜实现顺槽远程操作、远程巡视的工作面无人开采。
7.2 掘进工作面
7.2.1 应选用智能化快速掘进装备,实现掘支平行快速作业,锚杆自动支护。
7.2.2 设备应具备无线遥控、远程监控、可视化集中控制、记忆截割、人员接近识别、健康诊断,以及工作面环境状态识别及预警功能。
7.2.3 应实现带式输送机机尾自移。
7.2.4 应配备高效除尘系统。
7.2.5 应实现掘、锚、运、探的远程可视化操作。
7.2.6 宜实现掘、锚、运、探的自动操作,装备的精确定位导航。
8 辅助生产系统
8.1 通风系统
8.1.1 主通风机应具有一键启停、反风、倒机功能;具有运行风机故障自动倒机功能,备用风机定期自检及故障诊断功能。
8.1.2 主通风机应具有在线监测功能,监测供电参数、运行状态、风量、风压、振动、温度等工况参数,以及风机房配电室温湿度、烟雾等环境参数,具备故障诊断与预警功能。
8.1.3 应具有就地和远程风量给定与调节功能。
8.1.4 主通风机房、配电室应配置视频图像监视系统。
8.1.5 主通风机房、配电室宜配置机器人巡视装置。
8.1.6 无人值守通风机房,应设专人巡视,配置门禁系统。
8.1.7 宜实现防爆门远程状态监测与控制。
8.1.8 煤及半煤巷局部通风机应具有调速功能。
8.1.9 局部通风机应具有故障自动切换功能,当正常工作的局部通风机故障时,备用局部通风机能自动启动,保持局部通风机能正常通风。
8.1.10 应具备远程监测局部通风机运行状态、环境瓦斯浓度和末端风量功能,并具备远程控制功能。
8.1.11 局部通风机地点宜配置视频图像监视装置。
8.1.12 主要风门应实现自动控制并具有远程集中控制功能。
8.1.13 应具有远程监测风门状态与报警功能。
8.1.14 主要风门宜配置视频图像监视装置。
8.1.15 主要风窗应具有远程监测与调节控制功能。
8.1.16 应具备矿井各测风点通风参数远程监测功能。
8.1.17 宜采用先进的三维通风模拟技术解算并分析矿井通风网络;根据矿井通风网络参数变化,自动调节通风设施(如风门、风窗等),实现矿井风量的合理分配,并保持通风系统的稳定运行。
8.2 主运输及提升系统
8.2.1 带式输送机主驱动应采用软启动装置,具备软启动和无级调速功能,多点驱动实现功率平衡。
8.2.2 如有井底缓冲仓则其煤仓煤位应可准确测量,且其给煤机能受带式输送机控制系统的自动控制。
8.2.3 沿线煤流应实现分布状态实时监测,具有系统自检功能。
8.2.4 转载点应具有远方固定视频监控。
8.2.5 运输巷宜配备沿线巡检机器人,远方监控沿线视频巡视、跑偏、烟雾、瓦斯、托辊温度、撕带和煤流等状态。
8.2.6 主运输系统应实现煤流平衡。
8.2.7 应具有煤量控制的调速功能和具有上煤仓煤位与带式输送机运行闭锁功能,实现装煤自动化。
8.2.8 应具备地面和就地集中控制,地面生产中心具有皮带系统状态、参数和视频显示并集中控制。
8.2.9 应实现主煤流井下固定岗位无人值守,沿线无人作业,有人地面远程监控。
8.2.10 宜实现主煤流井下固定岗位无人值守,沿线无人作业,地面无人监控,系统智能化经济运行。
8.2.11 提升机应具有实时在线监测功能,能监测供电、制动正压力或油压、振动、温度等工况参数及行程、位置、速度运行状态,具备钢丝绳芯与闸瓦间隙监测功能,具有故障诊断与预警功能。
8.2.12 提升机房、各水平停车点应配置视频图像监视系统。
8.2.13 主井提升机宜实现无人值守,配置自动装卸载系统,具有自动选择方向开车、自动控制全程速度及按照预设速度图自动控制完成一个提升循环(自动加减速、到达爬行段自动转入爬行,自动停车)功能;无人值守提升机房宜配置门禁系统及机器人巡视装置,并应设专人巡视。
8.2.14 副井提升机应配置打点信号、自动操车系统,应按照预设速度图自动控制完成一个提升循环(自动加减速、到达爬行段自动转入爬行,自动停车)功能。
8.3 辅助运输系统
8.3.1 辅助运输设备应能实现精确定位,具备无线调度通讯、信息传输、安全监控、故障诊断、自动停车等功能。
8.3.2 采用单轨吊进行运输,物资、车厢的装卸及运输过程应实现自动化,若为点到点固定线路运输,宜采用无人驾驶。
8.3.3 采用轨道机车进行运输,应能实现智能调度,若条件具备,宜采用无人驾驶。
8.3.4 采用无轨胶轮车进行运输,应能实现智能调度,若条件具备,车辆宜具备路径智能规划、环境识别、智能调度等功能,实现辅助驾驶或无人驾驶。
8.3.5 采用多种运输方式进行混合运输,应符合MT/T 1167 的要求,不同运输方式之间的接替宜为自动化换装。
8.3.6 运输物料应建立编码体系,实现物料的集装化,物料装卸应实现自动控制,能够和煤矿仓储管理系统对接,实现物料运送全过程的信息化闭环管控。
8.3.7 调度管理系统应具备运输设备的智能调度和路径规划功能,实现运输过程的智能管控。
8.3.8 运人设备应具备人员精确识别功能,并具备运输轨迹回放功能。
8.4 供电系统
8.4.1 矿井供电系统应具有智能防越级跳闸保护,跳闸保护应符合NB/T 10051 的要求。
8.4.2 应具备智能选择性漏电保护功能。
8.4.3 智能变压器应具备中性点电容电流补偿功能。
8.4.4 智能系统应实现状态参数显示、巡检、故障录波存储、故障分析、智能告警。
8.4.5 机器人巡视装置应实现供电系统状态、环境、安全保卫等自动检测。
8.4.6 应对峰谷电量与能耗统计分析、电能质量监测。
8.4.7 变电站和配电室应具备自动灭火功能。
8.4.8 应具有智能开关和关键负荷电缆的测温和报警系统。
8.4.9 应具有智能倒闸操作专家管理系统。
8.4.10 应具有污染电网治理和谐波补偿系统。
8.5 排水系统
8.5.1 井下各排水泵房应实现自动运行、无人值守,远程集中监控。
8.5.2 应具备水仓水位、排水流量、设备运行工况、环境参数、安防、消防等在线监测功能,具有设备故障诊断分析、安全预警预报功能。
8.5.3 应具有负荷调控和管网调配功能,应能根据用电峰谷、水仓水位、矿井涌水量合理选择水泵启停数量和管路运行数量。
8.5.4 应具有水泵自动轮换功能。
8.5.5 应配备视频监控系统。
8.5.6 应具有水泵房能耗计量及分析功能。
8.5.7 应实现各水窝点水量监测,具有矿井涌水量实时预警功能。
8.5.8 排水系统宜实现与水文监测系统联动预警与控制。
8.5.9 抗灾强排系统应具备地面集中监测与控制功能,并具有水仓水位、电机贫水、电机温度、过电流等综合保护功能。
8.5.10 宜配备巡检机器人,实现水泵房自动巡检。
9 矿井安全
9.1 人员安全
9.1.1 人员单兵装备应具备所处环境参数的实时采集功能,且能显示本地和远程环境参数;应具备无线语音通话功能;应具备实时视频采集、上传,及调看远程视频的功能;应具备精准定位功能;应具备危险状态下逃生信息的实时获取功能;应具有应对各种灾害的可靠逃生装备。
9.1.2 矿井环境参数的实时监测信息应具有与人员单兵装备(维持单兵装备的电量不得低于48 小时)进行实时互联、音视频通信的功能;单兵设备应具备人岗匹配的生物特征识别,作业过程中岗位操作指引的语音提示;具备近感探测功能,实现人员非法进入和违规误入危险区域自动预警以及采掘工作面等重点场所、关键岗位人员三违行为的自动识别;井下所有区域的安全状态实时评估及预警信息具有与人员单兵装备进行实时互联,音视频通信的功能。
9.1.3 井口应具备智能检身功能,当有人员未携带定位卡、自救器及未按规定佩戴个体防护用品、一人多卡、人卡不一致、饮酒、携带违规物品、证件过期、安全考核不合格、违章停工人员,入井时能够自动识别并进行预警。
9.1.4 宜对井下边缘死角单岗作业人员进行定位监控,超过一定时长无变动进行预警;宜对井下人员入井时间进行自动统计预警。
9.2 机电安全
9.2.1 应具有设备在线点检功能。
9.2.2 应具有设备运行情况实时监测功能。
9.2.3 应具有设备损耗性部件更换提示功能。
9.2.4 应具有设备故障数据库,能对设备各部分的健康状态进行实时评估,为设备故障原因判断提供辅助决策。
9.3 灾害监测
9.3.1 根据矿井的灾害类型,应具备相应灾害的实时在线监测能力。
9.3.2 应具有监测数据的综合分析功能,数据突变识别功能,并具有对安全状态进行实时评估的功能,监测异常信息可自动推送至单兵系统、广播系统和地面煤矿信息化综合监控系统平台。
9.3.3 应能根据灾害监测数据、数据突变情况与评估信息,智能预测事故发生的可能性和严重程度。
9.3.4 应能根据灾害监测数据、数据突变情况与评估信息,自动制定相应的防害(灾)及降害(灾)方案。
9.4 安全风险预控管理
9.4.1 应具有完善的安全风险分级管控工作体系,并实现信息化管理。
9.4.2 应能够根据风险管控清单,自动进行风险的日常管控。
9.4.3 应能够自动和手动定期进行安全风险辨识评估及预警分析,形成安全指数的动态评价。
9.4.4 应具有隐患库,且隐患类别不低于国家和行业要求,并能自动更新完善。
9.4.5 基于隐患库,应实现按相关规定进行隐患排查和隐患处理过程的标准化。
9.4.6 人机环管安全监测数据应满足安全监管机构的联网要求。
9.4.7 应具备手持终端现场检查能力,实现隐患排查任务的自动派发、现场落实、实时跟踪及时闭环管理。
9.4.8 应实现对隐患的多维度自动统计与分析。
9.4.9 学习培训管理应具有员工在线学习、在线考核功能,并将员工技能掌握情况与下井考勤进行关联。
10 信息系统
10.1 通信网络
10.1.1 有线主干网络应采用矿用以太网技术,符合IEEE 802.3 协议,带宽10000Mbps 及以上,支持Ethernet/IP、PROFINET、MODBUS-RTPS、EPA 等工业以太网协议。
10.1.2 无线主干网络应采用主流高速带宽4G、5G 无线通信技术,WiFi 系统宜采用802.11ax 标准;支持井下移动语音通话、无线数据和视频等信息共网传输。
10.1.3 二级交换接入网络应采用100Mbps 以上工业以太网;具备组环功能,可形成子环,网络自愈时间小于30ms,能通过以太网电接口或光接口接入矿井主干网络;矿用二级交换接入网络设备支持Ethernet/IP、PROFINET、MODBUS-RTPS、EPA 等工业以太网协议,交换机应符合GB 51024 要求。
10.1.4 矿井低速无线网络应采用LoRa、ZigBee 技术,基站具备低速无线网络网关功能接入功能,数量不小于256 台,节点接入数量不小于26 万个,基站同时通信节点数不小于1024 个;无线通信距离不小于500m,传输带宽在通信距离以内不小于1kbps。
10.1.5 总线型接入网络应采用RS485、CAN、PROFIBUS、LONWORKS、FF 等;采用电缆、光缆等传输介质,采用树形、环形、总线形、星形或其它网络结构。
10.1.6 融合通信应支持低速无线通信组网,支持总线型组网;矿井有线主干网络以及无线主干网络之间以IEEE 802.3 标准相互联通;采用以太网标准的二级交换网络以IEEE 802.3 标准相互通信并接入矿井主干网络,其他制式接入网络采用具有融合通信功能的通信网关,实现不同制式接入网络的融合。
10.2 硬件设施
10.2.1 数据处理设备:矿端处理设备上位机应采用工控机,数据获取服务器、应用服务器宜采用国产自主可控服务器,采用“云-边-端”数据存储和处理模式;云端数据处理:公有云选用成熟公有云或工业云;私有云具备异地灾备、虚拟化资源池;移动数据处理终端具有MA 认证,具备4G(或5G)全网通或专网频段通信,具备Wi-Fi 无线通信功能,具备NFC、RFID、蓝牙等近场通信功能。
10.2.2 数据存储设备:数据中心存储容量应不小于2TB;数据库服务器容量不小于300GB,应用服务器存储可组建RAID5,容量不小于300GB,磁盘阵列容量不小于20TB;云端数据存储:公有云存储容量可弹性扩展,选用成熟公有云或工业云;私有云具备异地灾备,初始资源不小于20TB,且可在线增加硬件存储资源;移动端存储设备RAM 不小于4GB,数据存储空间不小于64GB。
10.2.3 矿井视频监控设备宜采用高清分辨率摄像头,视频采集设备具备视频切片、断网续传等功能;矿井视频监控信息存储系统容量不少于1 年的累计信息量,其他信息存储系统容量不少于2 年的累计信息量。
10.2.4 人工智能与物联网设备:矿用MA 认证井下端计算设备,应提供AI 智能识别和物联网标准协议接口,通过嵌入式软件系统应实现AI 感知与集控联动,支持离线运行模式,形成井下业务场景闭环;支持后备供电。
10.3 软件系统
10.3.1 应具有基于云计算、容器、大数据、人工智能、物联网等技术的应用平台,应用软件在平台中统一部署、运行。
10.3.2 应具有统一的容器数据输入、输出规范,拥有分布式消息队列系统。
10.3.3 应支持多租户机制,具有明确的应用入驻和用户使用流程。
10.3.4 平台应具备完成数据的统一存储、计算及接口的能力;或通过规则制定以及建设外部数据中台,可完成数据的统一存储、计算及接口。
10.3.5 应提供公共的开发资源和数据资源,应用在统一的规则、流程要求下,实现开发流程的简易化。
10.3.6 应配备“云-边-端”一体化智能平台,满足人工智能、大数据、物联网智能感知与采控需求,保障“云-边-端”互联互通,提供云计算模型训练、下发、升级等能力。
10.3.7 智能调度通讯系统应具备音视频通信及视频会议等能力,可与井下调度电话、广播系统互联互通,通信记录保存不少于6 个月,可调用其他应用系统。
10.4 数据平台
10.4.1 应采用统一的数据传输协议实现各系统设备的互联互通。
10.4.2 应构建矿井大数据平台,结合主数据管理、指标体系管理以及智能分析,深度挖掘,形成矿井先进管理指标体系和社会化主数据体系。
10.4.3 应实现产业互联、互联网采购和互联网营销,智能煤矿的煤炭销售、物资供应、设备维保等应经济、高效、便捷。
10.4.4 宜构建先进的数字化矿井运营管理平台,实现一张网联通、一张图运行、一个库管理、一套账核算、一个平台数据共享。
10.5 网络安全
10.5.1 应符合GB/T 34679 的要求。
10.5.2 矿井工业控制系统与企业其他系统之间应划分为不同区域,区域之间应设置工业隔离区,并采用隔离技术手段。
10.5.3 通信传输应具有通讯中断、网络流量异常监测与报警功能。
10.5.4 应保证工业控制网络与企业网、移动互联和远程访问等外部网络之间通过工业隔离区实现边界防护。
10.5.5 应删除多余或无效的访问控制规则,优化访问控制列表,并保证访问控制规则数量最小化。
10.5.6 在网络边界、重要网络节点应进行安全审计,审计覆盖到每个用户,对重要的用户行为和重要安全事件进行审计。
10.5.7 应对所有参与无线通信的用户(人员、软件进程或者设备)提供唯一性标识和鉴别。
10.5.8 应对登录的用户进行身份标识和鉴别,身份标识具有唯一性,身份鉴别信息具有复杂度要求并定期更换。
10.5.9 应启用安全审计功能,审计覆盖到每个用户,对重要的用户行为和重要安全事件进行审计。
10.5.10 应安装防恶意代码软件或配置具有相应功能的软件,软件需要经过离线环境中充分的验证和测试,并定期进行升级和更新防恶意代码库。
10.5.11 应采用白名单机制对操作员站、工程师站、服务器与客户机进行主机加固,将工业控制系统中的可信应用程序加入到白名单列表中,形成安全可信的应用程序运行环境,只允许经过工业企业自身授权和安全评估的软件运行。
11 经营管理
11.1 生产经营管理
11.1.1 应符合GB/T 51272-2018 的要求。
11.1.2 应具有标准作业流程管理信息化功能,并实现班组中每个岗位标准作业流程的精确推送。
11.1.3 应具有对班组成员自动进行考核的功能,并能根据考核结果自动制定有针对性的培训与学习计划。
11.1.4 应实现班组管理信息的移动互联。
11.1.5 应具有生产计划及调度管理、生产技术管理、机电设备管理等系统。
11.1.6 生产计划及调度管理系统应具有生产计划及日常调度管理功能,可根据企业ERP 数据实现生产计划排产。
11.1.7 机电设备管理系统应具有健康状况的远程在线诊断功能,应具有定期自动运维管理及配件库存识别功能。
11.1.8 生产级经营管理系统应具有规程措施编制、技术资料、专业图纸设计、采掘生产衔接跟踪、工程进度跟踪、生产与技术指标、经营指标等无纸化管理功能。
11.1.9 矿井经营管理系统应包括办公自动化管理、企业ERP 等系统,各系统之间应能交互数据。
11.1.10 企业ERP 应包括财务管理、成本管理、合同管理、运销管理、物资供应管理、仓储管理、设备管理等系统,且应提供规范化数据接口。
11.1.11 应实现销产联动,智慧采选,通过以销定产、按需配矿、集约运销、物流自动化,建立先进的销运产供协同体系。
11.1.12 应具有矿井精细化成本核算系统,实现矿井全要素成本核算管理,优化定额指标。
11.2 决策支持
11.2.1 矿井决策支持系统应能够对生产系统和管理系统数据进行融合,且应能建立数据分析模型。
11.2.2 应建立动态排产模型,有效分析ERP 中的经营数据;结合生产管理数据制定合理的排产方案,实现对矿井生产和运输物流环节进行合理调度。
11.2.3 应建立大型设备运维及管理模型,合理调整设备检修及大型耗能设备运转时间,实现对主要生产环节设备健康状况、负荷率、故障停机率、能源消耗等指标进行分析。
11.2.4 云端应实现各矿产能与资源调度的自动决策。
五、智能矿山建设规范?
1、要求建设者利用信息技术的先进模式,在价值发现,安全管度,资源整理,财务活动,矿山管理等领域,采取相关的智能化方法,以满足生产的及时控制要求,并实现建设的高度自动化,提升工作效率。
2、在设计和施工上,《智慧矿山建设标准》还要求确保设备质量和安全生产。设备要进行精良的制造和安装,确保设备质量及安全运行;施工过程中要结合现场环境,采取有效的防腐措施,以防止污染环境;在工程检测方面,确保智慧矿山技术及质量指标达到规定要求;同时,要采取必要措施,确保安全生产,防止安全事故发生。
六、矿山斜坡道设计规范?
《有色金属矿山井巷工程设计规范GB50915 - 2013
七、智慧城市智能矿山规划
随着科技的发展,智慧城市概念已经逐渐深入人们的生活和工作中。从过去单一的城市规划理念,发展到如今更加智能化、数字化的智慧城市规划,为城市的可持续发展提供了新的思路和方法。
智慧城市的定义
智慧城市是利用信息技术、通信技术以及物联网等现代技术手段来优化城市管理、提高城市运行效率,改善城市居民生活质量的城市发展模式。在智慧城市中,各种数据可以被收集、分析和利用,以实现更加高效的资源利用和服务管理。
智慧城市的特点
智慧城市的特点主要包括:
- 信息化:基于信息技术的支持,城市各个部门之间可以实现信息共享和协同工作。
- 智能化:通过人工智能等技术手段,城市可以实现自动化的管理和决策。
- 可持续发展:智慧城市的发展模式注重资源的可持续利用,减少能源浪费和环境污染。
- 服务化:以居民和企业需求为中心,提供个性化、精准化的服务。
智慧城市与智能矿山的关系
智慧城市和智能矿山都是基于信息技术和智能化技术来提升管理效率和服务质量的现代发展理念。智慧城市更注重在城市层面的综合规划和管理,而智能矿山则是在矿山领域应用智能化技术,实现矿山生产过程的智能化管理和控制。
智慧城市智能矿山规划是将智慧城市理念与智能矿山技术相结合,通过数据共享和技术融合,实现城市和矿山之间的协同发展和共赢。智慧城市可以为智能矿山提供更加精准的服务和支持,而智能矿山的智能化管理也可以为智慧城市的资源管理和能源利用提供借鉴和经验。
智慧城市智能矿山规划的重要性
智慧城市智能矿山规划的重要性体现在以下几个方面:
- 资源优化:通过智能化技术的应用,可以更有效地利用城市和矿山的资源,实现资源的最大化利用和节约。
- 环境保护:智慧城市智能矿山规划可以帮助城市和矿山减少能源浪费和环境污染,促进环保事业的发展。
- 经济发展:智慧城市智能矿山规划可以提高城市和矿山的管理效率和生产效率,推动经济的快速、健康发展。
- 人民生活:通过智慧城市智能矿山规划,可以提升城市居民和矿山员工的生活质量,改善生活环境和工作条件。
因此,智慧城市智能矿山规划对于城市和矿山的可持续发展具有重要意义,需要政府、企业和社会各界的共同努力和支持。
智慧城市智能矿山规划的发展趋势
未来,智慧城市智能矿山规划将呈现以下几个发展趋势:
- 智能化水平提升:随着人工智能、大数据等技术的不断发展,智慧城市和智能矿山的智能化水平将不断提升,实现更加智能化的管理和服务。
- 产业融合发展:智慧城市智能矿山规划将促进城市和矿山产业的融合发展,实现产业的协同创新和共同发展。
- 科技创新驱动:科技创新将成为智慧城市和智能矿山规划的重要驱动力,推动数字经济和智能产业的发展。
总的来说,智慧城市智能矿山规划作为城市和矿山发展的重要战略之一,将在未来发挥重要的作用,带动整个城市和矿山的转型升级和可持续发展。
八、智慧城市智能矿山项目
近年来,随着科技的快速发展,智慧城市概念逐渐受到人们的关注和重视。而在工业领域,智能矿山项目作为智慧城市建设的重要组成部分,也引起了诸多行业的关注和探讨。
智慧城市与智能矿山项目关系
智慧城市是指通过信息技术手段,对城市基础设施进行整合、优化和升级,实现城市管理的智能化和高效化。而在这一概念的基础上,智能矿山项目作为智慧城市的延伸,强调了在矿山开采和生产过程中应用智能化技术,提升矿山生产效率、安全性和环保性。
智慧城市对智能矿山项目的推动作用
智慧城市建设倡导信息技术与城市管理的融合,推动城市各个领域实现更高效的管理和运营。在这一背景下,智能矿山项目受益于智慧城市建设的理念和技术支持,得以加速发展。
- 智慧城市的数字化基础设施为智能矿山技术提供了强大支撑。
- 智慧城市的数据共享和互联互通为智能矿山项目提供了更广阔的发展空间。
- 智慧城市的智能化管理经验为智能矿山项目提供了宝贵借鉴。
智能矿山项目的发展趋势与挑战
随着科技的不断进步,智能矿山项目也在不断创新和发展。然而,同时也面临着一些挑战和困难。
- 技术更新换代的速度加快,智能矿山项目需要不断跟进和升级。
- 智能化技术应用在矿山生产过程中存在一定的风险和安全隐患,需要加强管理和监控。
- 人才储备和培养是智能矿山项目发展过程中亟需解决的问题。
结语
总的来说,智慧城市和智能矿山项目之间存在着密不可分的联系与互动。智慧城市为智能矿山项目的发展提供了巨大的推动力,而智能矿山项目的不断发展也进一步丰富和完善了智慧城市建设的内涵和实践。在未来的发展中,两者必将共同促进工业与城市的智能化进程,为社会的可持续发展作出更大的贡献。
九、智慧城市智能矿山建设
智慧城市和智能矿山建设是当前社会发展中备受关注的重要话题。随着科技的不断进步和社会的快速发展,人们对于城市智能化和矿山自动化的需求日益增加,这也带动了智慧城市和智能矿山建设的蓬勃发展。
智慧城市
智慧城市是指利用先进的信息技术,对城市的各个方面进行智能化管理和运营的城市发展模式。在智慧城市中,各种数据和信息能够实现高效整合和共享,从而提升城市的运行效率、优化资源配置、改善居民生活质量。
智慧城市建设涉及多个方面的内容,包括智能交通、智能能源、智能环保、智能医疗等。通过物联网、人工智能、大数据等技术手段的应用,智慧城市能够实现城市各个领域的数字化、智能化改造,为城市的可持续发展提供强大支撑。
智能矿山建设
智能矿山建设是指利用先进的信息化技术和自动化设备,对矿山生产过程进行智能化管理和运营的矿业发展模式。在智能矿山中,通过实时监测设备状态、优化生产计划、提高安全生产水平等措施,实现矿山生产的高效、安全、环保。
智能矿山建设涉及到智能矿井、智能采掘、智能矿山安全监测等方面,通过传感器、自动化设备、无人机等技术的运用,智能矿山能够实现矿业生产过程的数字化、智能化管理,提高矿山的生产效率和安全性。
智慧城市与智能矿山建设的关联
智慧城市和智能矿山建设都是利用信息技术和自动化设备实现智能化管理的重要实践领域,二者在技术应用和管理理念上存在诸多相通之处。智慧城市中的智能交通、智能环保等技术手段也可以在智能矿山中得到应用,提升矿山生产的智能化水平。
同时,智能矿山建设中所涉及的生产自动化、设备监测等技术也可以为智慧城市的建设提供借鉴和支持,促进城市各个领域的智能化发展。因此,智慧城市与智能矿山建设在技术创新和发展路径上具有一定的关联性。
结语
智慧城市和智能矿山建设是当前社会发展的重要趋势,两者的融合发展将会为城市和矿山的管理运营带来新的机遇与挑战。随着科技的不断进步和应用场景的不断拓展,智慧城市和智能矿山建设必将迎来更加美好的发展前景。
十、数字化矿山和智能化矿山区别?
就目前技术水平而言,只是称呼不同,本质上没有差别。
都是利用5G物联网技术(包括人工智能)将井下作业通过地面总控系统进行分区控制及整合,克服了过去危险环境下人工采矿的局限性,大大提高了采矿效率,降低了人工劳动强度及成本,改善了安全环境。
这个是未来矿山发展的必由之路。但是前期投入比较大。目前中小民营矿企暂时不具备条件实施。