您的位置 主页 正文

荧光材料有哪些?

一、荧光材料有哪些? 荧光材料有无机荧光材料和有机荧光材料。 1、无机荧光材料 无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物

一、荧光材料有哪些?

荧光材料有无机荧光材料和有机荧光材料。

1、无机荧光材料

无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。

2、有机荧光材料

有机小分子发光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。

3、 磷光物体

由于含有磷元素而发光,这种材料也经常被当成光致发光材料。光致发光材料的应用: 光致发光粉是制作发光油墨、发光涂料、发光塑料、发光印花浆的理想材料。发光油墨不但适用于网印各种发光效果的图案文字,如标牌、玩具、字画、玻璃画、不干胶等,而且因其具有透明度高、成膜性好、涂层薄等特点,可在各类浮雕、圆雕(佛像、瓷像、石膏像、唐三彩)、高分子画、灯饰等工艺品上喷涂或网印,在不影响其原有的饰彩或线条的前提下大大提高其附加值。发光油墨的颜色有:透明、红、蓝、绿、黄等。

二、荧光碳纳米材料定义?

碳纳米材料是指尺寸在1~100 nm,主要由碳元素构成的材料,它包括碳纳米点、富勒烯、碳纳米突、碳纳米泡沫等,其中,富勒烯是被人们研究最多,也最受关注的碳纳米材料。它们独特的物理化学性质使他们被广泛应用于生物医药领域,比如药剂载体、荧光对照试剂等等。

  碳纳米材料(包括零维、一维、二维碳纳米材料以及碳纳米孔材料)是一类新型的催化剂或催化剂载体材料,在氧化脱氢、选择加氢、合成氨、氨分解制氢以及燃料电池等多相催化领域具有广阔的应用前景。本文综述了近年来新型碳纳米材料在多相催化领域中的应用研究进展,介绍了这类催化材料的制备方法,重点阐述了碳载体的微/介观结构、掺杂、电子性质、表面性质、限域效应等对所担载的催化活性组分的分散,对反应物的扩散以及对催化反应的活性和选择性等方面的影响。

三、纳米材料有哪些?

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于 10-100 个原子紧密排列在一起的尺度。纳米材料具有一些独特的物理、化学和生物学性质,这些性质使得它们在许多领域都有广泛的应用。以下是一些常见的纳米材料:

1. 碳纳米管:碳纳米管是由石墨烯片卷曲而成的中空管状物,具有高强度、高韧性、高导电性和高热导率等特性,在能源、环境、电子、生物医学等领域都有广泛的应用。

2. 纳米金属材料:纳米金属材料具有高强度、高硬度、高韧性、高导电性和高催化活性等特性,在航空航天、汽车、电子、催化等领域都有广泛的应用。

3. 纳米陶瓷材料:纳米陶瓷材料具有高强度、高硬度、高耐磨性、高耐腐蚀性和低密度等特性,在航空航天、汽车、电子、生物医学等领域都有广泛的应用。

4. 纳米复合材料:纳米复合材料是由两种或多种不同材料在纳米尺度范围内复合而成的材料,具有优异的物理、化学和力学性能,在航空航天、汽车、电子、生物医学等领域都有广泛的应用。

5. 纳米药物:纳米药物是指将药物分子制成纳米尺寸的颗粒,具有靶向性、缓释性、高效性等特性,在肿瘤治疗、基因治疗、疫苗等领域都有广泛的应用。

6. 纳米传感器:纳米传感器是指将传感器元件制成纳米尺寸的颗粒,具有高灵敏度、高选择性、低能耗等特性,在环境监测、医学诊断、食品安全等领域都有广泛的应用。

这些只是纳米材料的一部分,随着纳米技术的不断发展,还会涌现出更多新型的纳米材料。

四、纳米材料的运用有哪些?纳米材料的运用有哪些?

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。

就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。

一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。

纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。

纳米材料分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

纳米纤维: 指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。

纳米膜: 纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

纳米材料的用途很广,主要用途有:

医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。

家电 用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用处作电冰霜、空调外壳里的抗菌除味塑料。

电子计算机和电子工业 可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。

环境保护 环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。

纺织工业 在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。

机械工业 采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

五、图像识别荧光纳米材料

图像识别荧光纳米材料的未来发展

图像识别技术在近年来取得了巨大的突破,在各个领域都有着广泛的应用。而荧光纳米材料的发展也成为了当前研究的热点之一。荧光纳米材料结合图像识别技术,将能够带来许多新的应用与可能性。

什么是荧光纳米材料?

荧光纳米材料是一种由纳米颗粒组成的材料,它们能够在特定光照下发出可见光的特性。这些纳米颗粒的尺寸通常在1到100纳米之间,相比于普通材料而言,它们具有更高的表面积与更强的荧光效应。

荧光纳米材料的发展已经取得了很大的突破,目前已经能够制备出各种不同类型的荧光纳米颗粒,如量子点、碳点、金纳米簇等。这些材料不仅具有荧光发射的特性,还能够通过控制其组成和表面修饰来实现既定的光学性质。这为荧光纳米材料在图像识别领域的应用提供了更多的可能性。

荧光纳米材料在图像识别中的应用

荧光纳米材料在图像识别中有着广泛的应用前景,以下是几个重要的应用领域:

  • 生物医学图像学:荧光纳米材料可以被设计成能够与特定的生物分子相互作用,并产生特定的荧光响应。通过使用这些荧光纳米材料作为探针,可以实现对生物分子的检测与成像,如癌细胞的检测、荧光药物的传递等。
  • 安全监控与防伪:荧光纳米材料具有独特的荧光特性,可以被用于制作具有防伪功能的标签和印刷品。通过这些荧光标识,可以实现对商品的溯源与防伪,提高产品的可信度与安全性。
  • 环境监测与污染控制:荧光纳米材料可以被设计成能够对特定的环境污染物进行识别与测量。通过将这些纳米材料与传感器相结合,可以实时监测环境中的污染物浓度,并采取相应的措施进行污染控制与治理。
  • 智能交通与物流:荧光纳米材料可以被应用于车辆和货物的识别与跟踪。通过在车辆和货物上标记荧光纳米材料,可以实现对其在运输过程中的状态进行实时监测与管理,提高物流的效率与安全性。

荧光纳米材料与图像识别技术的结合

荧光纳米材料与图像识别技术的结合将会带来更加强大的功能与应用:

首先,荧光纳米材料作为传感器的载体,可以实现对特定目标物的高灵敏度、高选择性的检测。通过利用图像识别技术,可以实时捕捉荧光信号,并将其转化为数字信号进行分析与处理,从而实现对目标物的快速准确识别与定量分析。

其次,荧光纳米材料可以被设计成能够对环境光照的变化做出响应,实现自适应性图像识别。通过控制荧光纳米材料的荧光发射特性,可以对光照条件进行补偿,提高图像识别的稳定性与准确性。

另外,荧光纳米材料可以实现多模态图像识别。通过调控荧光纳米材料的光学性质,可以实现对不同波段或不同能量的光信号的识别与分析,从而获得更加丰富的图像信息。

荧光纳米材料在图像识别中的挑战与前景

尽管荧光纳米材料在图像识别中具有巨大的潜力,但也面临一些挑战:

首先,荧光纳米材料的合成与制备方法还需要进一步优化,以提高材料的稳定性、光学性能及可控性。只有在获得高质量的荧光纳米材料基础上,才能更好地发挥其在图像识别中的作用。

其次,荧光纳米材料在环境应用中可能面临对生物体或环境的潜在风险。因此,在使用过程中需要充分考虑材料的生物相容性与环境安全性,做好相关的风险评估与管理。

最后,荧光纳米材料与图像识别技术的结合还需要进一步研究与探索。目前,这两个领域的交叉研究还比较有限,需要加强学术界与工业界的合作,共同推动荧光纳米材料在图像识别领域的应用与发展。

总的来说,荧光纳米材料的发展与图像识别技术的进步相互促进,将会为我们带来更多的惊喜与应用。相信在不久的将来,荧光纳米材料在图像识别领域的应用将会得到进一步的推广与普及。

六、无机纳米材料有哪些?

1、纳米SiO2

  

  纳米SiO2是不定型的白色粉末(指团聚状态),其分子结构呈三维链状,存在大量不饱和的残键和不同键合态的羟基。它可与基材的某些基团发生键合作用,从而大大改善材料的硬度和强度。纳米SiO2颗粒尺寸小,具有较高的流动性,当采用适当的方式与树脂复合时,其分布在高分子键的空隙中,使得复合材料的强度、韧性、延展性显著提高。

  

  2、层状硅酸盐粘土

  

  层状硅酸盐是粘土矿物,如钠蒙脱土、锂蒙脱土和海泡石等可用于制备聚合物,目前研究较多并具有实际应用前景的纳米复合材料用层状硅酸盐、结构单元是由一片铝氧八面体夹在两片硅氧四面体之间形成的层状结构,层间有可交换性阳离子,如Na+、Ca2+、Mg2+等,它们中可与无机金属离子或有机阳离子等交换,从而修饰硅酸盐层间表面形成具有不同性能的无机和有机粘土,这种硅酸盐粘土以纳米级微块分散在聚合物中,形成无机/有机复合材料,其性能明显优于纯聚合物材料,在制备聚合物/纳米复合材料领域中得到广泛应用。

  

  3、纳米CaCO3

  

  纳米CaCO3材料来源易得,用纳米CaCO3作为塑料填充剂可减少树脂用量,大大降低成本,而且制品的拉伸强度、伸长率等性能指标均有所提高,起到补强剂的作用,还可以提高塑料加工时的流变性和挤出速度,改善塑料加工性能。研究发现,掺加纳米CaCO3后材料得以增强增韧,且其光透性能没有受到影响。

  

  4、纳米TiO2

  

  TiO2的晶体粒径达到纳米级后,其性能得到极大改善产生突破性的变化。将其添加于环氧树脂中可明显提高材料的综合性能。

  

  5、纳米Al2O3

  

  工业界对纳米Al2O3在聚合物和环氧树脂改性中的应用进行了大量的研究,将纳米Al2O3粒子用作橡胶填充时可以提高其介电性、耐磨性和材料的耐高温冲击韧性。纳米α-Al2O3与环氧树脂的复合材料,使其模量增加,玻璃化转变温度提高,模量达极大值。纳米Al2O3与其他填料一起填充聚合物还可能产生协同效应。

  

  6、纳米ZnO

  

  纳米ZnO是常用于聚合物增韧改性主流产品,它用于改性环氧树脂已相当广泛,但仍存在许多问题,主要是如何解决纳米粒子的团聚,使其尽可能均匀地分散在聚合物材料体系中,以得到增强增韧的高性能环氧树脂复合材料。

  

  7、石墨烯

  

  任小孟等研究了天然石墨(NG)、石墨烯(GNS)、膨胀石墨(EG)和氧化石墨烯(GO)4种石墨烯类材料对环氧树脂的增韧和增强作用。不同添加剂对断裂伸长率的影响不同,石墨烯(GNS)的作用最明显,余者较差,天然石墨(NG)不能增韧环氧树脂。

七、纳米材料有哪些用途?

纳米材料的特点:

当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。

我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。

纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。

“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。

无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。

纳米材料的用途:

纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。

用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮”DNA的结构,有点像黑暗中挂满了灯笼的宝塔,借助与发光的“灯笼”,我们不仅可以识别灯塔的外型,还可识别灯塔的结构。

简而言之,这些纳米晶粒,在DNA分子上贴上了标签。 目前,我们应当避免纳米的庸俗化。尽管有科学工作者一直在研究纳米材料的应用问题,但很多技术仍难以直接造福于人类。2001年以来,国内也有一些纳米企业和纳米产品,如“纳米冰箱”,“纳米洗衣机”。

这些产品中用到了一些“纳米粉体”,但冰箱和洗衣机的核心作用任何传统产品相同,“纳米粉体”赋予了它们一些新的功能,但并不是这类产品的核心技术。

因此,这类产品并不能称为真正的“纳米产品”,是商家的销售手段和新卖点。现阶段纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段,应该指出这不过是纳米材料应用的初级阶段,可以说这并不是纳米材料的核心,更不能将“纳米粉体的应用”等同与纳米材料。

纳米材料应用范围

1、 天然纳米材料

海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。最后,长大的海龟还要再回到佛罗里达州的海边产卵。如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。

生物学家在研究鸽子、海豚、蝴蝶、蜜蜂等生物为什么从来不会迷失方向时,也发现这些生物体内同样存在着纳米材料为它们导航。

2、 纳米磁性材料

在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。

3、 纳米陶瓷材料

传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

4、纳米传感器

纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。

5、 纳米倾斜功能材料

在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。

如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。

6、纳米半导体材料

将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。

利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。

7、纳米催化材料

纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。

镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。纳米铂黑催化剂可以使乙烯的氧化反应的温度从600 ℃降低到室温。

8、 医疗上的应用

血液中红血球的大小为6 000~9 000 nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药的效果好。

八、纳米晶体材料有哪些?

纳米晶体材料是一类具有纳米级晶粒尺寸的材料,其晶粒尺寸通常在1到100纳米之间。由于其特殊的结构和尺寸效应,纳米晶体材料表现出与传统材料不同的性质和应用潜力。以下是一些常见的纳米晶体材料及其应用领域:

1. 纳米金属材料:

   - 纳米银:具有优异的导电性和抗菌性能,可应用于导电墨水、抗菌涂层等领域。

   - 纳米铜:具有高导电性和良好的催化性能,可应用于电子器件、催化剂等领域。

   - 纳米铁:具有高磁导率和催化活性,可应用于磁性材料、催化剂等领域。

2. 纳米半导体材料:

   - 纳米硅:具有优异的光学和电学性能,可应用于太阳能电池、光电器件等领域。

   - 纳米氧化锌:具有优异的光催化和光电性能,可应用于光催化、光电器件等领域。

   - 纳米二氧化钛:具有优异的光催化和光电性能,可应用于太阳能电池、光催化等领域。

3. 纳米陶瓷材料:

   - 纳米氧化铝:具有高硬度和耐磨损性能,可应用于涂层、陶瓷复合材料等领域。

   - 纳米氧化锆:具有高强度和耐磨损性能,可应用于陶瓷复合材料、生物医学等领域。

   - 纳米碳化硅:具有高硬度和高温稳定性,可应用于涂层、陶瓷复合材料等领域。

4. 纳米多孔材料:

   - 纳米氧化铁:具有大量的孔隙结构和磁性,可应用于催化、吸附、分离等领域。

   - 纳米二氧化硅:具有大比表面积和孔隙结构,可应用于催化、吸附、药物传递等领域。

   - 纳米碳纤维:具有高比表面积和机械强度,可应用于催化、电池材料等领域。

5. 纳米生物材料:

   - 纳米蛋白质:具有良好的生物相容性和生物活性,可应用于生物医学、药物传递等领域。

   - 纳米纤维素:具有优异的力学性能和生物降解性,可应用于组织工程、药物传递等领域。

   - 纳米生物陶瓷:具有良好的生物相容性和机械性能,可应用于骨修复、牙科材料等领域。

纳米晶体材料的制备和应用涉及到复杂的工艺和技术,需要在实验室或专业设备中进行。此外,纳米材料的安全性和环境影响也需要引起重视。

九、纳米材料有哪些特点?

特点

纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。

纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。

十、纳米管是纳米材料有哪些?

纳米管有硅纳米管、单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、功能化多壁碳纳米管、短多壁碳纳米管、工业化多壁碳纳米管、石墨化多壁碳纳米管、大内径薄壁碳纳米管、镀镍碳纳米管。

为您推荐

返回顶部