您的位置 主页 正文

纳米金属粉末的特点有什么,有哪些制备方法?

一、纳米金属粉末的特点有什么,有哪些制备方法? 纳米金属粉末的特点: 1.高效催化剂:纳米粉末所具有的高活性、比表面积大的特点使其常适于用作为催化剂。实验研究表明,纳米

一、纳米金属粉末的特点有什么,有哪些制备方法?

纳米金属粉末的特点:

1.高效催化剂:纳米粉末所具有的高活性、比表面积大的特点使其常适于用作为催化剂。实验研究表明,纳米钴粉、粉、锌粉等具有极强的催化效果。利用这些纳米粉末制成的催化剂在一些有机物的化学合成方面,催化效率比传统催化剂要高出数十倍,可用于有机物氢化反应、汽车尾气处理等。(纳米钴粉,纳米镍粉,纳米锌粉)2.高效助燃剂:纳米粉末具有极强的储能特性,将其作为添加剂加入燃料中可大大提高燃烧率。将一些纳米粉末添加到火箭的固体燃料推进剂中, 可大幅度提高燃料的燃烧热、燃烧效率,改善燃稳定性。有研究表明,向火箭固体燃料中加入0.5%纳米铝粉或镍粉,可使燃烧效率提高10%-25%,燃烧速度加快数十倍。(纳米铝粉,纳米镍粉)纳米金属粉末的制备方法: 1.传统制备方法:气相法、液相法、固相法。

2.新型制备方法:等离子气化法、金属喷雾燃烧法。

二、粉末冶金的制备?

(1)生产粉末。

粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入机油、橡胶或石蜡等增塑剂。

(2)压制成型。

粉末在15-600MPa压力下,压成所需形状。

(3)烧结。

在保护气氛的高温炉或真空炉中进行。

烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。

烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。

(4)后处理。

一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。

后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。 粉末的制取方法: 制取粉末是粉末冶金的第一步。粉末冶金材料和制品不断的增多,其质量不断提高,要求提供的粉末的种类愈来愈多。

例如,从材质范围来看,不仅使用金属粉末,也使用合金粉末,金属化合物粉末等;从粉末外形来看,要求使用各种形状的粉末,如产生过滤器时,就要求形成粉末;从粉末粒度来看,要求各种粒度的粉末,粗粉末粒度有500~1000微米超细粉末粒度小于0.5微米等等。 为了满足对粉末的各种要求,也就要有各种各样生产粉末的方法这些方法不外乎使金属、合金或者金属化合物呈固态、液态或气态转变成粉末状态。制取粉末的各种方法以及各种方法制的粉末。

呈固态使金属与合金或者金属化合物转变成粉末的方法包括:

(1)从固态金属与合金制取金属与合金粉末的有机械粉碎法和电化腐蚀法:

(2)从固态金属氧化物及盐类制取金属与合金粉末的还原法从金属和合金粉末、金属氧化物和非金属粉末制取金属化合物粉末的还原-化合法。

呈液态使金属与合金或者金属化合物转变成粉末方法包括:

(1)从液态金属与合金制取与合金粉末的有雾化法。

(2)从金属盐溶液置换和还原制取金属合金以及包覆粉末的有置换法、溶液氢还原法;从金属熔盐中沉淀制取金属粉末的有熔盐陈定法;从辅助金属浴中析出制取金属化合物粉末的有金属浴法。

(3)从金属盐溶液电解制取金属与合金粉末的有水溶液电解法;从金属熔盐电解制取金属和金属化合物粉末的有熔盐电解法。

呈气态使金属或者金属化合物转变成粉末的方法:

(1)从金属蒸汽冷凝制取金属粉末的有蒸汽冷凝法;

(2)从气态金属碳基物离解制取金属、合金以及包覆粉末的有碳基物热离解法。

(3)从气态金属卤化物气相还原制取金属、合金粉末以及金属、合金涂层的有气相氢还原法;从气态金属卤化物沉积制取金属化合物粉末以及涂层的有化学气相沉积法。 但是,从过程的实质来看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。

机械法是将原材料机械的粉碎,而化学成分基本上不发生变化的工艺过程;物理化学法是借助化学的或物理的作用,改变原料的化学成分或聚集状态而获得粉末的工艺过程,粉末的生产方法很多从工业规模而言,应用最广泛的汉斯还原法、雾化法和电解法有些方法如气相沉积法和液相沉积法在特殊应用时亦很重要。

三、纳米盐制备方法?

纳米金属盐的制备方法,包括:提供金属阳离子溶液;以及提供氢氧根阴离子与碳酸根阴离子至金属阳离子溶液中,以沉淀形成纳米金属盐,其中纳米金属盐具有氢氧根阴离子与碳酸根阴离子。

四、制备纳米微粒原理?

不同的微粒有不同的制法,大部分都可以用球磨机(物理研磨法)制得,但是粒径不稳定而且耗时长,例如四氧化三铁,可以用碱性环境共价沉淀法(Fe3+,2+,OH-)制备,控制pH在9-11可以得到小粒径的纳米级颗粒(四氧化三铁)用磁铁沉淀底部,滤去其他液体,乙醇洗涤,并加入乙醇溶液以防止颗粒凝聚

五、纳米涂层的纳米涂层制备工艺?

纳米涂层的制造方法主要包括气相沉积、各类喷涂(含常温喷涂、火焰喷涂和等离子喷涂等)、镀覆(含电镀和化学镀)等多种方法 。

气相沉积:采用化学或物理气相沉积法可以在基体表面上形成纳米薄膜或得到纳米涂层。

纳米喷涂:热喷涂方法制备纳米结构涂层的主要优点是工艺简单,涂层和基体选择范围大,涂层厚度变化范围大,沉积率高,容易形成复合涂层等。

纳米涂装:在普通的涂料中,添加适当的纳米颗粒,可以大幅度提高涂料的悬浮稳定性、耐水洗性、附着力、光洁度、抗老化性等,并可同时得到一些特殊性能如光催光、吸收电磁波、防静电等。

六、粉末的制备方法有哪些?

粉末的制备方法有这些:

(1)真空冷凝法。用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。

(2)物理粉碎法。通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

(3)机械球磨法。采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

七、纳米金的制备方法?

配制浓度为2.44×10-3 mol/L 的HAuCl4·4H2O溶液、浓度为3.43×10-2 mol/L 的Na3C6H5O7·2H2O 溶液、浓度为1.00×10-4 mol/L 的 PVP 溶液, 以及浓度为0.391 mol/L 的NaBH4 溶液备用。

在烧杯中加入10 mL 氯金酸溶液, 10 mL 或不加保护剂溶液, 80 mL 三蒸水, 将烧杯置于数显测速恒温磁力搅拌器上, 边加热边搅拌, 搅拌的转速设置为600 r/min, 加热至75℃, 恒温2 min, 用移液管移取一定体积的还原剂(Na3C6H5O7 或NaBH4)溶液,迅速一次加入到上述混合液, 开始计时, 使液体颜色恒定并持续加热一段时间共9 min, 停止加热, 继续搅拌5 min 后, 停止搅拌, 冷却至室温, 所得液体为纳米金溶胶。

八、纳米粉末的原理?

纳米粉末是一种粒径在纳米级别的粉末,它具有很多独特的物理、化学和生物学性质,因而在许多领域都具有重要的应用前景。其原理主要与纳米级别的量子效应和表面效应有关。

首先,纳米粉末的粒径在纳米级别,与传统的粉末相比,其具有更多的表面积和更多的表面活性位点。这些表面活性位点能够吸附和反应更多的分子和离子,从而增强了纳米粉末的催化活性、吸附性能、电化学性能等。

其次,纳米粉末的粒径在纳米级别,其晶格结构和晶粒尺寸与传统粉末相比也发生了改变。由于其晶粒尺寸小于光波长,因此产生了量子限制效应,晶格结构发生了变化、物理性质也发生了变化。例如,纳米粉末的电导率、热导率、磁性、光学性质等均有所改变,这些性质的变化为纳米粉末应用提供了更多的可能性。

总之,纳米粉末的原理主要涉及纳米级别的量子效应和表面效应,这些效应赋予了纳米粉末许多独特的性质和应用前景。

九、如何制备四氧化三铁粉末?

反应物是亚铁盐,如FeCl2,氧化剂一般用H2O2,便于控制,环境一般用碱性环境,碱性环境下的H2O2的氧化性不至于太强,也便于控制。

注意用N2保护,避免O2接触,因为过程中生成的Fe(OH)2一接触到O2就会被氧化成Fe(OH)3。实验中H2O2的用量要严格控制,只能让部分Fe被氧化到+3价。理想的四氧化三铁磁流是黑色的液体,实际上属于胶体分散系了。若略显棕色,意味者生成部分Fe2O3,只要不很多,也不影响磁流体的性质。而略显棕色是为了便于判断大部分的Fe转化为了Fe3O4,因为FeO也是黑色的,若只是黑色,其实难以判断是否发生了转换。

十、制备纳米金方程式?

配制浓度为2.44×10-3 mol/L 的HAuCl4·4H2O溶液、浓度为3.43×10-2 mol/L 的Na3C6H5O7·2H2O 溶液、浓度为1.00×10-4 mol/L 的 PVP 溶液, 以及浓度为0.391 mol/L 的NaBH4 溶液备用。

在烧杯中加入10 mL 氯金酸溶液, 10 mL 或不加保护剂溶液, 80 mL 三蒸水, 将烧杯置于数显测速恒温磁力搅拌器上, 边加热边搅拌, 搅拌的转速设置为600 r/min, 加热至75℃, 恒温2 min, 用移液管移取一定体积的还原剂(Na3C6H5O7 或NaBH4)溶液,迅速一次加入到上述混合液, 开始计时, 使液体颜色恒定并持续加热一段时间共9 min, 停止加热, 继续搅拌5 min 后, 停止搅拌, 冷却至室温, 所得液体为纳米金溶胶。

为您推荐

返回顶部