一、dna芯片的基本操作流程?
DNA芯片技术能够提供极为丰富的信息,但其操作流程并不复杂。应用基因也即DNA芯片进行实验的操作过程主要包括以下4个操作流程。其基本步骤为:
1.芯片方阵的构建、其中包括探针的制备片剂者处理以及点样
2.样品的制备、其中包括细菌性样本的制备,病毒性样本的制备。
3.杂交反应
4.信号的检测及分析。
二、DNA分析系统操作流程?
操作流程如下:
1、测序文库的构建
首先准备基因组,然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。
2、锚定桥接
Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。
3、预扩增
添加未标记的dNTP 和普通Taq 酶进行固相桥式PCR 扩增,单链桥型待测片段被扩增成为双链桥型片段。通过变性,释放出互补的单链,锚定到附近的固相表面。通过不断循环,将会在Flow cell 的固相表面上获得上百万条成簇分布的双链待测片段。
4、单碱基延伸测序
在测序的flow cell中加入四种荧光标记的dNTP 、DNA聚合酶以及接头引物进行扩增,在每一个测序簇延伸互补链时,每加入一个被荧光标记的dNTP就能释放出相对应的荧光,测序仪通过捕获荧光信号,并通过计算机软件将光信号转化为测序峰,从而获得待测片段的序列信息。
5、数据分析
这一步严格来讲不能算作测序操作流程的一部分,但是只有通过这一步前面的工作才显得有意义。测序得到的原始数据是长度只有几十个碱基的序列,要通过生物信息学工具将这些短的序列组装成长的Contigs甚至是整个基因组的框架,或者把这些序列比对到已有的基因组或者相近物种基因组序列上,并进一步分析得到有生物学意义的结果。
三、dna芯片技术利用的是dna的 能力?
用的是碱基互补配对,将基因的脱氧核糖核苷酸序列检测出来。
四、dna芯片技术的优缺点?
DNA芯片技术,实际上就是一种大规模集成的固相杂交,是指在固相支持物上原位合成(in situsynthesis)寡核苷酸或者直接将大量预先制备的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交。通过对杂交信号的检测分析,得出样品的遗传信息(基因序列及表达的信息)。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。
根据芯片的制备方式可以将其分为两大类:原位合成芯片和DNA微集阵列(DNA microarray)。芯片上固定的探针除了DNA,也可以是cDNA、寡核苷酸或来自基因组的基因片段,且这些探针固化于芯片上形成基因探针阵列。因此,DNA芯片又被称为基因芯片、 cDNA芯片、寡核苷酸阵列等。
作为新一代基因诊断技术,DNA芯片的突出特点在于快速、高效、敏感、经济,平行化、自动化等,与传统基因诊断技术相比,DNA芯片技术具有明显的优势:
①基因诊断的速度显著加快,一般可于30 min内完成。若采用控制电场的方式,杂交时间可缩至1 min甚至数秒钟。
②检测效率高,每次可同时检测成百上千个基因序列,使检测过程平行化。③基因诊断的成本降低。
④芯片的自动化程度显著提高,通过显微加工技术,将核酸样品的分离、扩增、标记及杂交检测等过程显微安排在同一块芯片内部,构建成缩微芯片实验室。
⑤因为是全封闭,避免了交叉感染;且通过控制分子杂交的严谨度,使基因诊断的假阳性率、假阴性率显著降低。
DNA芯片技术在肿瘤基因表达谱差异研究、基因突变、基因测序、基因多态性分析、微生物筛选鉴定、遗传病产前诊断等方面应用广泛。如感染性疾病是由于病原微生物(病毒、细菌、寄生虫等)侵入机体而引起。目前已经获得一些生物的全部基因序列,包括141种病毒,几种细菌(流感嗜血杆菌、产甲烷球菌、支原体M.genitalium及实验室常用的大肠杆菌等)和一种真核生物(酿酒酵母),且数量还在增长。
因此,将一种或几种病原微生物的全部或部分特异的保守序列集成在一块芯片上,可快速、简便地检测出病原体,从而对疾病作出诊断及鉴别诊断。用DNA芯片技术可以快速、简便地搜寻和分析DNA多态性,极大地推动法医生物学的发展。比如将个体SNPs设计在一块DNA芯片上,与样品DNA杂交,即可鉴定基因的差异。
人的体型、长相约与500多个基因相关,应用DNA芯片原则上可以揭示人的外貌特征、脸型、长相等,这比一般意义的DNA指纹谱又进了一步。 应用DNA芯片还可以在胚胎早期对胎儿进行遗传病相关基因的监测及产前诊断,为人口优生提供有力保证;而且可以全面监测200多个与环境影响相关的基因,这对生态、环境控制及人口健康有着重要意义。
五、揭秘芯片DNA提取技术的奥秘
芯片DNA提取技术:了解DNA提取的全过程
随着生物技术的发展,芯片DNA提取技术逐渐成为科研领域的热点。本文将带您深入探讨这一技术的奥秘,帮助您更好地理解DNA提取的全过程。
什么是芯片DNA提取技术?
芯片DNA提取技术是一种高通量的DNA提取方法,它通过微型芯片上的微小通道和反应腔对DNA进行快速、高效的提取和纯化。
芯片DNA提取技术的优势
相比传统的DNA提取方法,芯片DNA提取技术具有操作简便、提取速度快、耗材成本低的优势。同时,这一技术能够同时处理多个样本,提高工作效率,适用于大规模的实验研究。
芯片DNA提取的应用领域
目前,芯片DNA提取技术已广泛应用于基因组学、生物医学研究、疾病诊断等领域。通过这一技术,科研人员可以快速、准确地提取DNA样本,为后续的分子生物学研究提供坚实的基础。
芯片DNA提取技术的发展趋势
随着科学技术的不断进步,芯片DNA提取技术也在不断创新和完善中。未来,我们可以期待这一技术在生命科学领域发挥更广泛的作用,为人类健康和生活质量的提升贡献更大的力量。
感谢您阅读本文,希望通过对芯片DNA提取技术的深入了解,为您在科研实践中提供更多的帮助和启发。
六、第二代DNA测序技术的操作流程?
操作流程如下:
1、测序文库的构建
首先准备基因组,然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。
2、锚定桥接
Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。
3、预扩增
添加未标记的dNTP 和普通Taq 酶进行固相桥式PCR 扩增,单链桥型待测片段被扩增成为双链桥型片段。通过变性,释放出互补的单链,锚定到附近的固相表面。通过不断循环,将会在Flow cell 的固相表面上获得上百万条成簇分布的双链待测片段。
4、单碱基延伸测序
在测序的flow cell中加入四种荧光标记的dNTP 、DNA聚合酶以及接头引物进行扩增,在每一个测序簇延伸互补链时,每加入一个被荧光标记的dNTP就能释放出相对应的荧光,测序仪通过捕获荧光信号,并通过计算机软件将光信号转化为测序峰,从而获得待测片段的序列信息。
5、数据分析
这一步严格来讲不能算作测序操作流程的一部分,但是只有通过这一步前面的工作才显得有意义。测序得到的原始数据是长度只有几十个碱基的序列,要通过生物信息学工具将这些短的序列组装成长的Contigs甚至是整个基因组的框架,或者把这些序列比对到已有的基因组或者相近物种基因组序列上,并进一步分析得到有生物学意义的结果。
七、dna纳米技术 :方法与操作
DNA纳米技术:方法与操作
在当今科技发展日新月异的时代,DNA纳米技术作为一项引人注目的前沿技术,正逐渐走进人们的视野。本文将重点探讨DNA纳米技术的方法与操作,以期为感兴趣的读者提供全面且详细的信息。
什么是DNA纳米技术
DNA纳米技术是一种利用DNA分子自身的自组装特性,将其作为材料,通过精密的设计和操作,构建出具有特定功能的纳米结构的技术。这种技术结合了生物学、化学、物理学等多个学科的知识,具有广泛的应用前景。
应用领域
DNA纳米技术在各个领域都展现出巨大的应用潜力,特别是在生物医药、纳米电子学、智能传感器等领域。通过设计具有特定结构和功能的DNA纳米结构,可以实现靶向治疗疾病、制备高效纳米电子器件、构建智能传感系统等。
方法与操作
DNA纳米技术涉及到许多复杂的方法和操作步骤。首先是DNA的合成和提取,然后是DNA的设计和修饰,接着是纳米结构的组装和表征。这些步骤需要高度的仪器设备支持和操作技能,具有一定的挑战性。
关键技术
1. DNA的设计:精确设计DNA序列,确保所构建的纳米结构具有期望的功能。
2. DNA的修饰:通过化学修饰等手段改变DNA的性质,增强其在纳米结构中的作用。
3. 自组装技术:利用DNA分子间的特异性配对,实现纳米结构的自组装。
4. 纳米结构的表征:借助先进的分析技术,对构建的纳米结构进行表征和分析。
未来展望
随着科技的不断进步和DNA纳米技术的不断发展,相信这项技术将在生物医药、纳米电子学、智能传感器等领域展现出更广阔的应用前景。我们期待未来能够看到DNA纳米技术为人类社会带来更多的惊喜和创新。
八、DNA指纹技术检测流程?
1.
DNA样品的制备 从生物样品中提取DNA,可运用PCR技术扩增出高可变位点或者完整的基因组DNA。
2.
DNA样品的酶切反应 然后将扩增出的DNA酶切成DNA片断。
3.
酶切产物的琼脂糖电泳 经琼脂糖凝胶电泳,按分子量大小分离后,转移至尼龙滤膜上。
4.
结果观察与分析 用放射自显影便可获得DNA指纹图谱。
九、dna条形码技术流程?
1、工作流程
DNA条形码技术所应用的分子生物学技术并不复杂,主要工作流程包括样品采集、DNA提取、设计和合成通用引物、选引物,优化反应条件进行PCR扩增、PCR产物的纯化、序列测定和分析。简单来说,即通过对一组来自不同生物个体的短的同源DNA序列(约800 bp )进行PCR扩增和测序,随后对测得的序列进行多重序列比对和聚类分析,从而将某个体定位到某个分类群中。
序列数据分析是DNA条形码探索的zui重要环节,首先进行序列比对和人工校正,通过MEGA 或PAUP 计算 种内和种间的K2P距离,用于表示不同分类阶元之间的序列变异程度,比较种、属和科 3 个水平上的序列差异, 然后根据计算结果建立NJ 树(neighbourjoining tree),最后依据DNA条形码遗传距离就能对未知标本进行分类和鉴定。
十、dna检测实验室操作流程?
一、DNA提取的完整步骤 :
1. 取新鲜或冷冻样品的肌肉组织100ul-200ul或95%ALC保存的样品组织0.05g。 2. 将组织尽量剪碎,分别装入1.5ml 的离心管中。
3. 每管中加入450ul的裂解缓冲液(10mM Tris-HCl pH8.0; 100mM EDTA, pH8.0)
4. 每管加入10% SDS 50-100ul(70-80不定) (1-2%),再加入2.5-5ul(3ul)蛋白酶K (20mg/ml),使其终浓度达100ug/ml. 混匀,55℃ 3h至过夜(期间将管子颠倒几次)。
5. 样品中加入150ul NaCl(盐析作用),室温8000rpm离心20min,去沉淀,然后在上清液