一、南桥芯片供电电路工作原理?
南桥芯片 持 (South Bridg 持 e)是主板芯片组的重要组 持 成部分,一般位于主板上离 持CPU 插槽较远的下方,P 持 CI 插槽的附近,这种布局 持 是考虑到它所连接的 I/O 持 总线较多,离处理器远一点 持 有利于布线。相对于北桥芯 持 片来说,其数据处理量并不 持 算大,所以南桥芯片一般都 持 没有覆盖散热片。南桥芯片 持 不与处理器直接相连,而是 持 通过一定的方式(不同厂商 持 各种芯片组有所不同,例如 持 英特尔的英特尔Hub A 持 rchitecture 以 持 及 SIS 的 Multi-T 持 hreaded“妙渠”) 持 与北桥芯片相连。 南 持 桥芯片负责 I/O 总线之间 持 的通信,如 PCI 总线、U 持 SB、LAN、ATA、S 持 ATA、音频控制器、键盘 持 控制器、实时时钟控制器、 持 高级电源管理等,北桥负责 持 CPU 和内存、显卡之间的 持 数据交换,南桥负责 CPU 持 和 PCI 总线以及外部设备 持 的数据交换 。
二、电路板怎么给芯片供电?
电路板给芯片供电通常通过连接芯片的电源引脚和电路板上的电源线路实现。首先,确定芯片的电源需求,包括电压和电流。
然后,将电源线路连接到芯片的正负电源引脚上,确保极性正确。电源线路可以通过电源模块、电池或外部电源等方式提供电压。在连接过程中,需要注意电源线路的稳定性和过载保护,以确保芯片能够正常工作并避免损坏。
三、adc检波电路?
检波器,是检出波动信号中某种有用信息的装置。用于识别波、振荡或信号存在或变化的器件。检波器通常用来提取所携带的信息。检波器分为包络检波器和同步检波器。
前者的输出信号与输入信号包络成对应关系,主要用于标准调幅信号的解调。
后者实际上是一个模拟相乘器,为了得到解调作用,需要另外加入一个与输入信号的载波完全一致的振荡信号(相干信号)。
同步检波器主要用于单边带调幅信号的解调或残留边带调幅信号的解调。
四、ADC电路组成?
Adc电路就是指模数转换电路。也就是将模拟信号变为数字信号。一般用在数据采集方面。
ADC,Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器。是指将连续变量的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。
五、有哪些串行adc芯片推荐吗?
这个种类太多了 还有不同场景下所使用的型号也不一样
美信的 MAX111 系列 MAX195系列 ADI的AD7705
美信 ADI这一块比较常见
六、adc芯片原理?
从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为 Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo<Vi,该位1被保留,否则被清除。
然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的 Vo再与Vi比较,若Vo<Vi,该位1被保留,否则被清除。
重复此过程,直至逼近寄存器最低位。
转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。
七、adc芯片用途?
ADC芯片技术含量较高,用途广泛:从测量仪器、手机、HiFi耳机到5G通信基站中都存在不同种类的ADC,部分高端产品甚至受到美国商务部出口管控的限制。
来自美国杨百翰大学的研究者构建了世界上能效最高的高速模拟数字转换器(A/D转换器,简称ADC)。在大部分电子设备中,ADC是能将模拟信号转换为数字信号的电子元件,该转换过程一般包括取样、保持、量化、编码4个过程。
在ADC芯片40多年的历史中,其基本架构、设计和生产技术已经趋近于成熟,但在庞大的消费电子领域中,如此复杂而成熟的芯片有时也会成为机器性能的瓶颈。当前,移动设备的升级换代速度比以往更快。每年,科技巨头们都会制造出速度更快、功能更强大、电池续航时间更长的移动终端。苹果、三星等公司之所以能奇迹般地实现目标,主要是因为世界各地的工程人员不断设计出更加节能的高速传输芯片。
八、adc如何单独供电?
将a dc设备接通电源后,单独连接设备就可以独立进行供电
九、电路板上如何判断芯片供电?
芯片在电路板上只存在数字电路,目前多数芯片呈低伏数工作状态,即1.5-5伏,很多电路板为了能供芯片正常工作,须在电路应用中改变电压,即在电路中加稳压管,比如7805就是提供稳定直流电压5伏的稳压管,在电路板上如何判断芯片是否供电可用万用表对电源端和地(com)端测量其电压。
十、什么是Adc电路?
Adc电路就是指模数转换电路。也就是将模拟信号变为数字信号。一般用在数据采集方面。
ADC,Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器。是指将连续变量的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。
典型的模拟数字转换器将模拟信号转换为表示一定比例电压值的数字信号。然而,有一些模拟数字转换器并非纯的电子设备,例如旋转编码器,也可以被视为模拟数字转换器。
数字信号输出可能会使用不同的编码结构。通常会使用二进制二补数(也称作“补码”)进行表示,但也有其他情况,例如有的设备使用格雷码(一种循环码)。
模拟信号在时域上是连续的,因此可以将它转换为时间上连续的一系列数字信号。这样就要求定义一个参数来表示新的数字信号采样自模拟信号速率。这个速率称为转换器的采样率(sampling rate)或采样频率(sampling frequency)。
可以采集连续变化、带宽受限的信号(即每隔一时间测量并存储一个信号值),然后可以通过插值将转换后的离散信号还原为原始信号。这一过程的精确度受量化误差的限制。然而,仅当采样率比信号频率的两倍还高的情况下才可能达到对原始信号的忠实还原,这一规律在采样定理有所体现。
由于实际使用的模拟数字转换器不能进行完全实时的转换,所以对输入信号进行一次转换的过程中必须通过一些外加方法使之保持恒定。常用的有采样-保持电路,在大多数的情况里,通过使用一个电容器可以存储输入的模拟电压,并通过开关或门电路来闭合、断开这个电容和输入信号的连接。许多模拟数字转换集成电路在内部就已经包含了这样的采样-保持子系统。