您的位置 主页 正文

巨磁阻效应原理?

一、巨磁阻效应原理? 巨磁阻效应工作原理: 巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。巨磁阻是一种量子力学效应,它产生于层

一、巨磁阻效应原理?

巨磁阻效应工作原理:

巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。

二、巨磁阻效应的具体解释?

所谓巨磁阻效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。

巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。

这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。

当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。

当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。

上下两层为铁磁材料,中间夹层是非铁磁材料。

铁磁材料磁矩的方向是由加到材料的外磁场控制的,因而较小的磁场也可以得到较大电阻变化的材料。

三、巨磁阻效应实验怎么连线?

该实验有两个独立的电路:

电磁电路的连接:电源一正极→开关s1→电磁铁→滑动变阻器→电源一负极。

巨磁电阻电路的连接:电源二正极→开关s2→指示灯→巨磁电阻→电源二负极。

最后特别注意:在闭合开关前,把巨磁电阻紧靠电磁铁放置,然后接通两个独立的电路,移动滑动变阻器的滑片,观察指示灯的亮度的变化。

四、巨磁阻效应的本质是什么?

1. 谓磁电阻效应,是指对通电的金属或半导体施加磁场作用时会引起电阻值的变化。其全称是磁致电阻变化效应。磁电阻效应可以表达为   式中 △ρ——有磁场和无磁场时电阻率的变化量;   ρ0——无磁场时的电阻率;   ρB——有磁场时的电阻率。   在大多数金属中,电阻率的变化值为正,而过渡金属和类金属合金及饱和磁体的电阻率变化值为负。半导体有大的磁电阻各向异性。利用磁电阻效应,可以制成磁敏电阻元件,其常用材料有锑化铟、砷化铟等。磁敏电阻元件主要用来构造位移传感器、转速传感器、位置传感器和速度传感器等。为了提高灵敏度,增大阻值,可把磁敏电阻元件按一定形状(直线或环形)串联起来使用。 2. 所谓巨磁阻效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。

五、巨磁阻传感器灵敏度?

1、巨磁阻传感器: 灵敏度3.3mV/V·Gs~4.0 mV/V·Gs;线性范围:–8.0Gs~+8.0Gs;饱和磁场15Gs。

2、传感器工作电源:4V~15V连续可调。

3、传感器测量信号4位半LED显示。

4、亥姆霍兹线圈: 线圈有效半径110mm;单个线圈匝数500匝;二线圈中心间距110mm;温升不大于10℃的zui大负荷电流不小于0.。

5、内置恒流源部分: 输出电流:0~0.,zui大电压 24V;3位半LED显示,zui小分辨率 1mA。

六、磁阻公式?

阻抗(ohm)=2*3.14159*F(工作频率)*电感量(mH),

设定需用360ohm阻抗,因此:

电感量(mH)=阻抗(ohm)÷(2*3.14159)÷F(工作频率)=360÷(2*3.14159)÷7.06=8.116mH

据此可以算出绕线圈数:

圈数=[电感量*{(18*圈直径(吋))+(40*圈长(吋))}]÷圈直径(吋)

圈数=[8.116*{(18*2.047)+(40*3.74)}]÷2.047=19圈

空心电感计算公式

空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H)

D------线圈直径

N------线圈匝数

d-----线径

H----线圈高度

W----线圈宽度

单位分别为毫米和mH。。

空心线圈电感量计算公式:

l=(0.01*D*N*N)/(L/D+0.44)

线圈电感量l单位:微亨

线圈直径D单位:cm

线圈匝数N单位:匝

线圈长度L单位:cm

频率电感电容计算公式:

l=25330.3/[(f0*f0)*c]

工作频率:f0单位:MHZ本题f0=125KHZ=0.125

谐振电容:c单位:PF本题建义c=500...1000pf可自行先决定,或由Q值决定

谐振电感:l单位:微亨

线圈电感的计算公式

1.针对环行CORE,有以下公式可利用:(IRON)

L=N2.ALL=电感值(H)

H-DC=0.4πNI/lN=线圈匝数(圈)

AL=感应系数

H-DC=直流磁化力I=通过电流(A)

l=磁路长度(cm)

l及AL值大小,可参照Microl对照表。

例如:以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH

L=33.(5.5)2=998.25nH≈1μH

当流过10A电流时,其L值变化可由l=3.74(查表)

H-DC=0.4πNI/l=0.4×3.14×5.5×10/3.74=18.47(查表后)

即可了解L值下降程度(μi%)

2.介绍一个经验公式

L=(k*μ0*μs*N2*S)/l

其中

μ0为真空磁导率=4π*10(-7)。(10的负七次方)

μs为线圈内部磁芯的相对磁导率,空心线圈时μs=1

N2为线圈圈数的平方

S线圈的截面积,单位为平方米

l线圈的长度,单位为米

k系数,取决于线圈的半径(R)与长度(l)的比值。

计算出的电感量的单位为亨利。

k值表

2R/lk

0.10.96

0.20.92

0.30.88

0.40.85

0.60.79

0.80.74

1.00.69

1.50.6

2.00.52

3.00.43

4.00.37

5.00.32

100.2

七、磁阻系数?

自感系数和磁阻无关! 线圈的自感系数跟线圈的形状、长短、匝数以及是否有铁芯等因素有关。线圈面积越大、线圈越长、单位长度匝数越密,它的自感系数就越大。另外,有铁心的线圈的自感系数比没有铁心时大的多。 线圈的自感系数 L = μ * N^2 * S / l 自感系数由线圈的性质决定:扎数,线圈长度,电感系数等 1。线圈为空心,磁导率 μ 为常数,所以线圈的自感系数与电流没有关系。

2。线圈有铁芯。因为一般铁芯都是铁磁质,而铁磁质的磁导率 μ 不是常数,是变化的。电流越大,线圈的磁通密度越高,μ就越小,自感系数就越小。也就是说这时自感系数是与电流有关的。

八、励磁阻抗与磁阻的关系?

这是两个完全不同的概念.

"励磁阻抗"是激励磁场的电阻、阻抗、容抗。它是由线圈和磁路共同决定。

"磁阻"却是磁通通过磁路时所受到的阻碍作用,用Rm表示。磁路中磁阻的大小与磁 路的长度l成正比,与磁路的横截面积S成反比,并与组成磁路的材料性质有关。它与线圈没有关系。

九、磁阻法原理?

磁阻效应(Magnetoresistance Effects)的定义: 是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。金属或半导体的载流子在磁场中运动时,由于受到电磁场的变化产生的洛伦兹力作用,产生了磁阻效应。

在地球磁场的一定范围内,其磁场强度是基本保持不变的,因此可以将没有扰动的地球磁场强度作为参考磁场强度。如果具有一定铁磁性的物体进入参考磁场时,就会对之前稳定的地球磁场产生干扰,从而磁场强度会发生变化。当一辆车具有比较大的铁磁特性时,其在静止或在行驶过程中,都会对稳定的地磁场产生扰动,但这种扰动相对参考磁场来讲是比较大的。根据这样的磁场扰动特性,物理学家发现可以采用可以检测磁场扰动的传感器对这种扰动进行数据采集分析,就能够获取车辆的行驶状态和基本参数,通过交通工程学可以进一步获取更多更详细的交通基础数据。这就是地球磁场扰动的检测工作原理。

十、什么是磁阻?

磁阻,是一个与电路中的电阻类似的概念。电流总是沿着电阻最小的路径前进;磁通量总是沿着磁阻最小的路径前进。磁阻与电阻一样,都是一个标量。

定义

一个磁路中的磁阻等于“磁动势”与磁通量的比值。这个定义可以表示为:

其中

是磁阻,单位为安培匝每韦伯,或匝数每亨利。

是磁动势,单位为安培匝。

Φ是磁通量,单位为韦伯。

这个定律有时称为霍普金森定律,又被称为磁路欧姆定律。与电路欧姆定律类似。

磁通量总是形成一个闭合回路,但路径与周围物质的磁阻有关。它总是集中于磁阻最小的路径。空气和真空的磁阻较大,而容易磁化的物质,例如软铁,则磁阻较低。

对于均匀的磁路,磁阻可以用以下的公式计算:

其中

l是磁路的长度,单位为米

是真空磁导率,等于亨利每米

是物质的相对磁导率,没有单位

A是磁路的截面面积,单位为平方米

磁导:磁阻的倒数称为磁导。

它的单位是亨利,与电感的单位一样,但两个概念完全不同。

为您推荐

返回顶部