一、深度学习理念?
深度学习是一种主动的、探究式的、理解性的学习,关注学习者高阶思维能力的发展,因此成为当前教学理论的研究热点。但从实践层面来看,很多中小学校对什么是深度学习、如何开展深度教学,还存在诸多模糊的甚至是错误的认识。本期专题从深度学习的本质、理念、模式等方面,探讨如何将深度学习贯穿到基础教育体系中,供读者参考。
从深度学习走向深度教学,一方面是教与学的一致性决定的,另一方面是当前中小学课堂教学普遍存在的局限性决定的。教与学的关系既不是对立关系,也不是对应关系,而是一种具有相融性的一体化关系,离开了教无所谓学,离开了学也无所谓教。学生真正意义上的深度学习需要建立在教师深度教导、引导的基础之上。从本质上看,教育学视野下的深度学习不同于人工智能视野下的深度学习,不是学生像机器一样对人脑进行孤独的模拟活动,而是学生在教师引导下,对知识进行的“层进式学习”和”沉浸式学习”。“层进”是指对知识内在结构的逐层深化的学习,“沉浸”是指对学习过程的深刻参与和学习投入。离开了教师的教学和引导,学生何以“沉浸”?因此,深度学习只有走向深度教学才更具有发展性的意义和价值。同时,我国新一轮基础教育课程改革以来,课堂教学改革依然存在着诸多表层学习、表面学习和表演学习的局限性,“学习方式的转变”往往演变成了教学形式的改变,诸如教与学在程序上的简单翻转和在时间上的粗暴分配。其所体现出来的知识观、价值观、教学观、过程观依然陈旧落后,以学科知识、学科能力、学科思想和学科经验的融合为核心的学科素养依然未能得到实质性的渗透。
深度教学的“深度”是建立在完整而深刻地处理和理解知识的基础之上的。艾根在深度学习的研究中,首次从知识论的角度,论述了深度学习的“深度”的涵义。他认为“学习深度”具有三个基本标准,即知识学习的充分广度(Sufficient Breadth)、知识学习的充分深度(Sufficient Depth)和知识学习的充分关联度(Multi-Dimensional Richness and Ties)。这三个标准,也是深度学习的核心理念。
第一,知识学习的充分广度。充分的广度与知识产生的背景相关,与知 识对人生成的意义相关,与个体经验相关,也与学习者的学习情境相关。如果教学把知识从其赖以存在的背景、意义和经验中剥离出来,成为纯粹的符号,便成为无意义的符号、无根基的概念知识。知识具有强烈的依存性,无论是自然科学的知识还是社会科学或人文学科的知识,都是特定的社会背景、文化背景、历史背景及其特定的思维方式的产物。离开了知识的自然背景、社会背景、逻辑背景,前人创造的知识对后人而言几乎不具有可理解性。随着深度学习的兴起,旨在以广度促进理解的“无边界学习”日益引起人们的重视。可见,知识的充分广度,其实是为理解提供多样性的支架,为知识的意义达成创造了可能性和广阔性基础。
第二,知识学习的充分深度。知识的充分深度与知识所表达的内在思想、认知方式和具体的思维逻辑相关,深度学习把通过知识理解来建立认识方式,提升思维品质,特别是发展批判性思维作为核心目标。所以说,深度学习是一种反思性学习,是注重批判性思维品质培养的学习,同时也是一种沉浸式、层进式的学习。深度学习强调学习过程是从符号理解、符号解码到意义建构的认知过程,这一过程是逐层深化的。
第三,知识学习的充分关联度。知识的充分关联度,是指知识学习指向与多维度地理解知识的丰富内涵及其与文化、想象、经验的内在联系。知识学习不是单一的符号学习,而是对知识所承载的文化精神的学习。同时,通过与学生的想象、情感的紧密联系,达到对知识的意义建构。从广度,到深度,再到关联度,学生认知的过程是逐层深化的。所谓意义建构,即从公共知识到个人知识的建立过程,都需要建立在知识学习的深度和关联度之上。
二、深度学习入门?
深度学习是一种基于人工神经网络的机器学习方法,它可以通过学习输入和输出之间的关系来自主地进行模式识别和数据分析。要入门深度学习,你需要掌握线性代数、微积分、概率统计等数学知识,熟悉编程语言如Python、C++、MATLAB等,并了解常见的深度学习框架如TensorFlow、Keras、PyTorch等。建议通过阅读深度学习相关书籍和课程,参加在线或线下的讲座和实践,与其他从业者进行交流和合作来不断提高自己的技能。
三、毕业设计:基于深度学习得水果识别系统和质量检测,应该从什么开始学呢?
摘要:水果新鲜程度检测软件用于检测水果新鲜程度,利用深度学习技术识别腐败或损坏的水果,以辅助挑拣出新鲜水果,支持实时在线检测。本文详细介绍水果新鲜程度检测系统,在介绍算法原理的同时,给出Python的实现代码、训练数据集,以及PyQt的UI界面。在界面中可以选择各种图片、视频进行检测识别;可对图像中存在的多目标进行识别分类,检测速度快、识别精度高。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
完整代码下载:https://mbd.pub/o/bread/ZJaXlZhq
参考视频演示:https://www.bilibili.com/video/BV1fg4y1x7kH/
离线依赖库链接:https://pan.baidu.com/s/1hW9z9ofV1FRSezTSj59JSg?pwd=oy4n (提取码:oy4n )
前言
随着物流和国际贸易经济的快速发展,国内外水果生产、储运和销售市场越来越大。目前,北果南运、南果北运以及外果内运已占物流运输的近半江山。目前,在水果采摘、储运和销售过程中常会出现一些问题,比如:为了确保水果运往销售地仍保持较新鲜的外观,果农在采摘时,通常选择水果成熟度在五、六成的水果,这样,既易于储运,又可从外形上不会让最终消费者感到讨厌。但其带来的不良影响是:因水果不好吃(水果口感差、肉质粗糙等不新鲜的特性)而失去费了很大劲开发的消费者市场。针对消费者而言,在购买水果时,仅看外形也无法知晓该水果的新鲜程度如何,尤其对于一些价格较贵、果品口感要求较高的水果,水果的新鲜程度尤为重要,如榴莲、荔枝、龙眼、菠萝、火龙果等。
水果新鲜程度检测系统是近年来计算机视觉领域的研究热点,同时也是目标检测领域中的难点。其目的是识别和定位图像中存在的腐坏水果,在许多领域中都有广泛的应用。本系统采用登录注册进行用户管理,对于图片、视频和摄像头捕获的实时画面,系统可检测画面中的动物,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:
检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个类别,也可开启摄像头或视频检测:
详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。
1. 效果演示
软件的功能和颜值很重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的水果是否损坏,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。
(一)系统介绍
水果新鲜程度检测软件主要用于日常水果新鲜程度检测,利用深度学习技术识别图像中已损坏的水果,输出水果的标记框坐标,以辅助自动化挑拣出新鲜水果;系统提供登录注册功能,可进行用户管理;系统能够有效识别图片、视频等文件形式,检测已损坏的水果,并记录识别结果在界面表格中方便查看;可开启摄像头实时检测和统计当前视野范围损坏水果数目,支持结果记录、展示和保存。
(二)技术特点
(1)YOLOv5算法实现,模型一键切换更新;(2)摄像头实时检测,展示、记录和保存水果情况;(3)检测图片、视频等图像中的损坏水果;(4)支持用户登录、注册,检测结果可视化功能;
(三)用户注册登录界面
这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个动图,右侧输入账号、密码、验证码等等。
(四)选择图片识别
系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:
(五)视频识别效果展示
很多时候我们需要识别一段视频中的水果,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个水果,并将水果的分类结果记录在右下角表格中,效果如下图所示:
(六)摄像头检测效果展示 在真实场景中,我们往往利用摄像头获取实时画面,同时需要对水果进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的水果,识别结果展示如下图:
2. 水果数据集及训练
这里我们使用的水果识别数据集,如下图所示,所有标签已转换至YOLOv5使用的txt格式。
每张图像均提供了图像类标记信息,图像中水果的bounding box,水果的关键part信息,以及水果的属性信息,数据集并解压后得到如下的图片
我们选取YoloV5作为网络模型,一方面是因为从最终效果来看YOLOv5已经相当优秀,是发展的比较完备、使用比较广泛的一个版本;而更重要的是YOLOv5的调用、训练和预测都十分方便,为初学者提供了良好的练手工具。YOLOv5的另一个特点就是它为不同的设备需求和不同的应用场景提供了大小和参数数量不同的网络。
如下图所示,大一点的模型比如YOLOv5l和YOLOv5x参数更多,在大规模的COCO数据集上有更高的预测准确率;而小模型比如YOLOv5n或YOLOv5s占空间更小,适合部署在移动设备上,且推理速度更快,适合于高帧 率视频的实时检测。
以下给出本系统项目的文件目录,其中包含了YOLOv5相关的代码以及界面设计代码,如下图所示。对于训练模型部分只需要关注train.py这个文件,训练用到的数据集、标注文件及配置文件在本项目中已配置完成。
首先我们找到训练的py文件。然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数。
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='/Apple/apple.yaml', help='garbage.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
# 训练是否使用GPU,若采用可设置为0
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--logdir', type=str, default='Apple/logs', help='logging directory')
parser.add_argument('--workers', type=int, default=1, help='maximum number of dataloader workers')
opt = parser.parse_args()
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练水果新鲜程度识别的模型训练曲线图。
一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。
以PR-curve为例,你可以看到我们的模型在验证集上的均值平均准确率为0.832。
3. 水果新鲜程度检测识别
运行testVideo.py,执行得到的结果如下图所示,图中水果的好坏和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。
博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。
下载链接
若您想获得博文中涉及的实现完整全部程序文件(包括测试图片、视频,py, UI文件等,如下图),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:
在文件夹下的资源显示如下,下面的链接中也给出了Python的离线依赖包,读者可在正确安装Anaconda和Pycharm软件后,复制离线依赖包至项目目录下进行安装,离线依赖的使用详细演示也可见本人B站视频:win11从头安装软件和配置环境运行深度学习项目、Win10中使用pycharm和anaconda进行python环境配置教程。
注意:该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为runMain.py和LoginUI.py,测试图片脚本可运行testPicture.py,测试视频脚本可运行testVideo.py。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,请勿使用其他版本,详见requirements.txt文件;
完整资源中包含数据集及训练代码,环境配置与界面中文字、图片、logo等的修改方法请见视频,项目完整文件下载请见以下链接处给出:➷➷➷
完整代码下载:https://mbd.pub/o/bread/ZJaXlZhq
参考视频演示:https://www.bilibili.com/video/BV1fg4y1x7kH/
离线依赖库链接:https://pan.baidu.com/s/1hW9z9ofV1FRSezTSj59JSg?pwd=oy4n (提取码:oy4n )
界面中文字、图标和背景图修改方法:
在Qt Designer中可以彻底修改界面的各个控件及设置,然后将ui文件转换为py文件即可调用和显示界面。如果只需要修改界面中的文字、图标和背景图的,可以直接在ConfigUI.config文件中修改,步骤如下: (1)打开UI_rec/tools/ConfigUI.config文件,若乱码请选择GBK编码打开。 (2)如需修改界面文字,只要选中要改的字符替换成自己的就好。 (3)如需修改背景、图标等,只需修改图片的路径。例如,原文件中的背景图设置如下:
mainWindow = :/images/icons/back-image.png
可修改为自己的名为background2.png图片(位置在UI_rec/icons/文件夹中),可将该项设置如下即可修改背景图:
mainWindow = ./icons/background2.png
结束语
由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。
四、迁移学习和深度学习区别?
迁移学习和深度学习都是机器学习的重要分支,但它们在处理数据和问题时有所不同。
深度学习是一种机器学习方法,它通过多层神经网络来自动学习特征,并从数据中预测结果。深度学习通常用于解决图像分类、语音识别和自然语言处理等问题。它需要大量的数据来训练模型,并且需要高性能的计算机来进行计算。深度迁移学习属于深度学习,它利用了深度学习的思想,通过在已经训练好的模型上进行微调,来解决新的问题。深度迁移学习可以利用已经训练好的模型,以减少训练所需的数据量和时间,并且可以在较低的计算成本下实现较高的准确率。
迁移学习是另一种机器学习方法,它通过相关的、类似的数据来训练模型,以实现模型本身的泛化能力。迁移学习的主要目的是将学习到的知识从一个场景迁移到另一个场景。例如,在图像识别中,从白天到晚上,从冬天到夏天,或者从识别中国人到识别外国人等,这些都属于迁移学习的范畴。
总的来说,深度学习和迁移学习都是机器学习的重要分支,它们在处理数据和问题时有所不同。深度学习需要大量的数据和高性能的计算机,而迁移学习则更注重将学习到的知识从一个场景迁移到另一个场景。在实际应用中,这两种方法可能会结合使用,以实现更高效的解决问题。机器学习是一种人工智能的分支领域,它研究如何使计算机能够通过数据学习和改进性能,而无需明确地编程指令。机器学习的目标是通过训练算法来构建模型,使其能够从数据中自动学习并做出预测或做出决策。
机器学习算法可以根据其学习方式分为监督学习、无监督学习和强化学习三种主要类型。
- 监督学习:通过给算法提供标记好的训练数据集,让算法学习输入和输出之间的映射关系。常见的监督学习任务包括分类和回归。
- 无监督学习:在无监督学习中,算法只能从输入数据中学习,而没有给定的输出标签。无监督学习的目标通常是发现数据中的模式、结构或关联。
- 强化学习:强化学习是通过与环境的交互来学习最优的行为策略。在强化学习中,算法通过尝试不同的行动并根据环境给出的奖励或惩罚来学习如何做出最佳决策。
机器学习在各个领域都有广泛的应用,例如图像和语音识别、自然语言处理、推荐系统、金融预测等。通过机器学习,计算机可以从大量的数据中学习,并根据学习到的知识做出智能的决策和预测。
五、深度学习,包括哪些?
深度学习(deep learing)是机械学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。至今已有数种深度学习架构,如深度神经网络、卷积神经网络和深度置信网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。另外。“深度学习”已成为类似术语,或者说是神经网络的品牌重塑。
六、中国深度学习之父?
孙剑的第一个深度学习博士
跟旷视研究院院长孙剑的经历一样,张祥雨也是一名“土生土长”的西安交大人,从本科到博士都在西安交大就读,在大三那年(2011年),张祥雨拿下了美国大学生数学建模竞赛(MCM)特等奖提名奖(Finalist),当时创下西安交大参加该项竞赛以来历史最好成绩。
凭借这次获奖经历,张祥雨获得了后来到微软亚洲研究院实习的资格。
获得实习资格的有三人,但最终只有一个人能留下。当时还在微软亚洲研究院担任首席研究员的孙剑给这三人出了一道题:用一个月的时间,将人脸检测的速度提升十倍。
七、什么是深度学习?
深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。
它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。
如果想学习深度学习可以关注中公优就业和中科院人工智能专家联合推出的相关课程
八、深度学习和深度强化学习有什么区别?
强化学习和深度学习是两种技术,只不过深度学习技术可以用到强化学习上,这个就叫深度强化学习.
1.强化学习其实也是机器学习的一个分支,但是它与我们常见的机器学习不太一样。它讲究在一系列的情景之下,通过多步恰当的决策来达到一个目标,是一种序列多步决策的问题。强化学习是一种标记延迟的监督学习。
2.强化学习实际上是一套很通用的解决人工智能问题的框架,很值得大家去研究。另一方面,深度学习不仅能够为强化学习带来端到端优化的便利,而且使得强化学习不再受限于低维的空间中,极大地拓展了强化学习的使用范围。
九、bert属于深度学习还是机器学习?
bert属于深度学习,用到了12层transformer神经网络,参数上亿。
十、深度学习是什么专业?
机器学习(ML, Machine Learning)领域中一个新的研究方向,目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据,也就是人工智能。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。