您的位置 主页 正文

学习人工智能算法要有哪些基础知识?

一、学习人工智能算法要有哪些基础知识? 做为参加实训的转行上岸者,提一点个人拙见,如有不当,还请谅解。 1.数学基础: 线性代数:矩阵、向量、线性变换等。 微积分:导数、

一、学习人工智能算法要有哪些基础知识?

做为参加实训的转行上岸者,提一点个人拙见,如有不当,还请谅解。

1.数学基础:

    • 线性代数:矩阵、向量、线性变换等。
    • 微积分:导数、积分等。(必备技能)
    • 概率与统计:概率分布、期望、方差、统计推断等。

2.编程技能:

    • 至少一种编程语言,如Python。了解基本的编程概念、语法和数据结构。

3.机器学习基础:

    • 了解监督学习、无监督学习、半监督学习和强化学习等不同类型的机器学习方法。
    • 了解交叉验证、过拟合、欠拟合等基本概念。

4.统计学知识:

    • 统计方法在训练、评估和优化模型时很重要。
    • 理解统计概念,如假设检验、置信区间等。

5.数据处理和分析:

    • 数据清洗、预处理、特征工程等。
    • 数据可视化的基本方法。

6.基本算法概念:

    • 理解基本的算法概念,如分类、回归、聚类、降维等。

7.深度学习基础(可选):

    • 了解神经网络、反向传播、激活函数等。
    • 学习常见的深度学习框架,如TensorFlow或PyTorch。

8.领域知识(根据兴趣):

    • 如果想在特定领域应用人工智能,了解该领域的基础知识很重要。

请注意,不需要一开始就精通所有这些知识。学习人工智能算法是一个渐进的过程,您可以从基础开始,逐步扩展您的知识。选择适合您当前水平的学习资源,并持续实践和探索,以提升您的技能和理解。

如果你是个小白,如果你是非计算机专业,如果你还是想学习AI职业技能。需要具备至少第一条技能,微积分先再复习复习吧。至于其他技能可以参加一些专业的培训,可以在短期内能从事相关岗位。然后再去工作岗位上,不断的积累和学习,假以时日未来可期!

(自述:我在深圳智谷一川参加了三个多月实训,二本非计算机专业,好在由于参加科研,数学复习的还可以,实训后平稳上岸。

但我还是要奉劝文科专业的学生谨慎选择,数学功底差,逻辑思维也不强的,我见过她们上岸很是吃力。在高强度的实训钟,求导都会晕头转向,慎选慎选!)

二、人工智能算法是建立在什么基础上?

图像识别:我们刚刚提到,在人工智能应用过程中对于一些我们人眼看到的图像进行识别并处理是人工智能的核心能力之一,无人车这样一种概念性人工智能产品同样对此有着需求,除此以外,金融领域的人脸验证同样也属于图像识别的运用。

自然语言处理:自然语言指的是人类所使用的,正常交流的语言,具体包括中文、英语、西班牙语等等,这些语言由于语种的不同,所对应的处理方式也有所不同,人工智能需要根据自然语言的词性、句式进行更好的判断,比较常见的包括一些语音助手。

大数据的应用:其实人工智能本身就是建立在大数据基础上的一种计算机应用,而通过人工智能的高效性和自主学习能力,强化对大数据的处理又是一种反向的应用,简单来说,目前金融行业,相当一部分人工智能的研究核心都放在如何去强化大数据处理能力,通过人工智能更好地做好风险预警,同时提升金融服务品质。

总的来说,以上三个方向都是人工智能的常用的三种算法,当然这里没有从纯技术上的代码层面去解读,而是一种功能方向上的讨论,毕竟对于绝大多数人来说,更关心的不是人工智能怎么造就,而是人工智能最终将把我们带向何方?

三、人工智能算法好学吗?

人工智能算法就是需要专业的大数据专业知识,一般人很难学懂

四、人工智能算法学什么?

人工智能是典型的交叉学科,涉及到数学、哲学、控制学、计算机、经济学、神经学和语言学等学科,同时学习人工智能还需要具有一定的实验环境,对于数据、算力和算法都有一定的要求,所以当前人工智能领域的人才培养依然以研究生教育为主。

五、人工智能算法有哪些?

人工智能领域算法主要有线性回归、逻辑回归、逻辑回归、决策树、朴素贝叶斯、K-均值、随机森林、降准和人工神经网络(ANN)等。

线性回归是最流行的的机器学习算法。线性回归就是找到一条直线,并通过这条直线尽可能地拟合散点图中的数据点。主要是通过方程和该数据变量拟合来表示自变量和数值结果来预测未来值。

六、人工智能算法的标志?

达特茅斯会议被广泛认为是人工智能诞生的标志。1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看作是人工智能正式诞生的标志,从此人工智能走上了快速发展的道路。

人工智能是需要人力、脑力、开发、高等技术与不断的研究和尝试等等一系列超高难度的作业才能完成的科技产品。当然这种研究是得到国家和人们大力支持的发展。它的发展对国际影响力是非常大的。人工智能也可以定义为高仿人类,虽然不可能会像人一样具有灵敏的反应和思考能力,但人工知能是按照人类的思想结构等等的探索而开发的研究。

人工智能的开发最主要的目的就是为了替人类做复杂、有危险难度、重复枯燥等的工作,所以人工智能是以人类的结构来设计开发的,人工智能在得到较好的开发后国家也是全力给予支持。人工智能的开发主要也是为了帮助和便利人类的生活。所以人工智能的定义一直以来都是以“协助人类”而存在的。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。

七、人工智能算法都有哪些?

一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。

八、人工智能算法性能含义?

主要看什么任务,分类任务为准确率和召回率。检测任务为map等指标。

九、人工智能算法的鼻祖?

是约翰·麦卡锡(John McCarthy)。

约翰·麦卡锡是20世纪60年代美国计算机科学领域的重要人物,被誉为“人工智能之父”。他在1956年的达特茅斯会议上首次提出了“人工智能”这一概念,并预见了人工智能在未来的巨大发展。

麦卡锡在他的著作《机器与智能》(Machine Intelligence)中详细阐述了他的观点,他认为人工智能可以被视为一种高级的智能形式,与人类智能不同,但可以模拟人类智能的某些方面。他提出了“形式化推理”的概念,即使用形式化的方法来描述和分析智能系统的推理过程。

麦卡锡的工作对人工智能的发展产生了深远的影响。他的理论为人工智能研究奠定了基础,并为后来的计算机科学家和工程师提供了重要的指导。

十、人工智能算法研究方向?

数据挖掘目前在国内的就业前景不是很好,因为只有极少数企业才有数据挖掘工程师这个职位。大部分学了数据挖掘的都去做数据分析和处理等工作了。人工智能是未来的发展方向,虽然目前不是很普遍,但是值得研究,深圳有些企业已经开始了初步的人工智能应用了。

为您推荐

返回顶部