一、人工智能在制造业领域有哪些应用?如何帮助制造业转型/升级?
人工智能在制造生产有哪些应用的这个话题足够大,因此需要厘清讨论边界。本文讨论的边界是如何通过人工智能这项技术代替人脑甚至超越人脑的功能,来实现制造业生产效率的提升。
在开始正式讨论前,尝试先回答一个问题。为什么制造业需要人工智能?
从两个维度来解读,首先是技术上:计算机处理速度大幅提升、存储成本下降、以及云计算、物联网等技术的发展,让人工智能的应用成本大幅降低。其次是需求上:随着消费者个性化和产品品质升级的需求发展,大大增加了制造业的复杂性,包括生产的组织形式、质量检测环节、仓储物流等环节。随着系统越来越复杂,人的学习曲线就会越缓慢,人应对复杂系统的能力就会成为制约技术进步和应用的瓶颈。在传统工业界大都以人的决策和反馈为核心,这就会导致系统中有很大一部分的价值并没有被释放出来。而人工智能为工业带来的变革,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。
本文讨论人工智能在生产不同环节,包括产线设备、质量检测、仓储物流、整体运维四个方面的应用。
1、人工智能在生产产线的应用
1.1产线设备维护
人工智能在工厂运维的应用:
比如一条生产线突然发出故障报警,机器能够自己进行诊断,找到哪里产生了问题,原因是什么,同时还能够根据历史维护的记录或者维护标准,告诉我们如何解决故障,甚至让机器自己解决问题、自我恢复。例如,在一个电网中,要能够可靠地定位在电网的哪个地方出现了问题,用常规方法大概只能做到80%。西门子利用了深度学习技术对历史故障事件学习,通过已经分布在电网中的继电器,来更好地判断电网出了什么问题,出在哪个地方等等。学习算法已经嵌入到我们标准断路器的产品中。
人工智能在预测性维护的应用:
如果工业生产线或设备如果突然出现问题,那造成的损失是非常巨大的。利用大数据建模和神经网络等算法,可以让机器在出现问题之前就感知到或者分析出可能出现的问题。比如,工厂中的数控机床在运行一段时间后刀具就需要更换,西门子的数控机床预防性维护解决方案,通过分析历史的运营数据,机器可以提前知道刀具会损坏的时间,从而提前准备好更换的配件,并安排在最近的一次维护时更换刀具。
1.2产线设备参数优化
生产产线工位少则几十个,多则数百个,涉及的产线设备、生产物料、工人都非常多。通过基于生产线的大量数据,基于大数据分析和智能算法可以优化生产工艺、提升产品品质。在中策橡胶,基于阿里云ET工业大脑,将生产端的各类数据进行深度运算和分析,形成了资源最优利用的方案组合,提升了5%混炼胶合格率。在天合光能,阿里云数据科学家通过研究光伏电池的业务流程和制作工艺,构建出数据分析模型,对工艺参数进行调整,最终在丝网印刷环节捕获到了关键因子,优化后A品率提升了7%。
2、人工智能在质量检测的应用
现在有很多工厂传统上都是用人工在做质量检测的工作,在生产流水线上的质检员,他们需要每天花10个小时以上的时间去判断质量。很多工厂这个工作岗位两三个月就要轮一次岗,因为肉眼确实受不了。为什么之前没用技术的手段帮助解决质检的问题呢?主要原因是传统视觉设备误判率比较高。大概是有百分之二十,甚至三十的误判率。人工智能最重要的一个能力,它具备学习能力。比如说,同样一个划痕,它会和传统系统一样,第一次都犯错误。但是人工智能第二次、第三次,它不会犯一样的错误,它具备一个学习能力。同样的问题或者类似的问题,下次它会做出非常精准的判断。而传统的系统除非修改程序,同样的问题,下次它一样会犯错误。
正如百度前人工智能首席专家吴恩达和富士康合作的智能检测,通过利用深度学习,神经网络,就可以让电脑快速学习做自动检测的工作。现在人工智能介入了以后,工厂的这种误判率会在上线时达到3%-4%的水平,并且会逐步减少到最低。
3、人工智能在仓储物流的应用
仓储物流的包括环节很多,从入库分拣、库位管理、上下架、出库分拣到物料运输,中间涉及分拣机器人、上下料机器人、立库、AGV小车、叉车等。通过计算机视觉用于分拣机器人的感知和地图定位,利用机器学习和深度学习,实现分检机器人的路径规划和避障。通过数学规划等运筹优化算法和遗传算法,实现仓库上下架策略管理。通过多智能体算法 蚁群算法用于多个分拣机器人的协调行动。基于人工智能技术实现货架、商品、机器人的整体协调,能够更快速的实现产品出入库和高效的仓库货架规划。在工厂仓储中,各种类型的全自动流水线、自动分拨、仓储和配送机器人已经开始慢慢应用,基于人工智能技术可以让每一个物料都有最优路径,最短时间送达。
4、人工智能在整体运维的应用
运维数据量庞大,基于深度学习技术在庞大的数据量中发掘价值。西门子在西班牙的高铁的运维中有一个整体的应用。西班牙的高铁公司有一条线从马德里到巴塞罗那的,而从马德里到巴塞罗那的航班很多,就像京沪线一样,这个行业面临和航空公司竞争的挑战。后来它公布一个政策,在这条线上如果延误超过15分钟,全额退款。这个高铁线到现在是非常成功的,背后是西门子提供的服务和担保,担保99%的准点率。西门子有一个工业4.0工厂在德国安贝格,在成都也有一个,是它的双胞胎。在安贝格,所有能源的分析、消耗都是通过神经网络来完成。基于人工智能技术来实现工厂整体能耗的降低。同时,西门子在全球30个钢铁厂也用了一些在线神经网络学习以及分析应用,来控制钢铁厂的能耗。
2018年汉诺威工业展人工智能应用案例
在西门子展台上利用人工智能技术打造的增加生产柔性的Autonomous系统。基于搭载西门子Autonomous系统的KUKA机器人,这款机器人的最大优势在于其出色的灵活性。其中一台样机搭载了三维感知摄像机,基于图像识别和深度学习技术,能对现场任何环境变化做出灵敏反应,即时调整操作轨迹。。这种技术可以大大增强生产线的柔性,不再局限于生产标准化产品。
在SAP展台上展示了模拟饮料装瓶作业的生产线。新型生产线上的大量数据被实时反馈和分析,最终实现给每个瓶子注入不同颜色液体的高效“个性化”生产。通过大数据建模等技术让机器间实现互联,如果从一台机器获取了信息,就能开始预测它的运行结果,预测产品质量,甚至预测整个物流程序,生产运营模式不再是以往那样遇到问题才被动反应。”
在Festo展台上展示了仿生学习网络:具有学习能力的工位,用于人类与机器人的合作。通过仿生工位,展示了具备学习能力的工位,用于人类与机器人合作,集合了BionicCobot(气动轻型机器人)与人工智能领域的信息技术系统的各种优点。 这种灵活的工位配备了多种辅助系统和外围设备(相互联网进行通信)。除了人工智能外,机器学习技术让仿生工位成为了一个具有学习能力的预判性系统,可持续自我优化。人可以通过手势、接触和语音控制直接与BionicCobot 进行交互,还可实现系统的远程操作。这种高效率、安全的人类与机器人的合作可实现个性化产品制造批量低至1。
在IBM展台上,利用人工智能为大型手扶电梯设备带来“预测性维护”。通过大数据的收集和分析,人工智能可预测出专业机械设备出问题的部分,让技术人员提前采取措施。这种“预测性维护”适用于工业生产中的各类设备。
上述人工智能的应用场景已经有先行者在尝试,但是作为人工智能的应用前提,工厂必须首先要实现数字化,这也是西门子、博世、海尔等公司目前在突破的方向。只有先积累完整的数据,才能够进一步为人工智能所用。关于人工智能在制造业的应用,最后用一句经典的话为文章收尾:我们倾向于高估一项新技术的短期效应,而低估它的长期影响。
特别感谢本文作者:
西门子数字化工厂集团及过程工业和驱动集团
Sales100 B16培训生
李海鸽供稿(微信号:Lihg0222) @李海鸽
二、人工智能在制造业的应用有哪些?
人工智能在制造业中的应用越来越广泛,以下是一些常见的应用:
- 预测维护:通过监控机器运行状态和收集数据,人工智能可以预测机器的故障,并在机器出现故障前提出维护建议,从而减少停机时间和维护成本。
- 质量控制:人工智能可以通过图像识别、声音识别等技术来检测产品的质量,识别缺陷并在制造过程中进行纠正,提高产品质量和一致性。
- 生产计划优化:通过分析供应链、订单和库存数据,人工智能可以预测需求和制造资源的使用情况,提出优化的生产计划。
- 人机协作:人工智能可以与工人共同操作生产线,帮助工人完成重复性和危险的工作,提高生产效率和安全性。
- 自动化生产线:人工智能可以管理和监控生产线上的机器和设备,优化流程并实现自动化生产。
- 智能仓储:人工智能可以通过机器视觉和自然语言处理技术来管理和优化仓储流程,包括货物的入库、出库和库存管理等。
- 营销和销售:人工智能可以分析市场和客户数据,提供更准确的销售预测和个性化的营销推荐。
总之,人工智能可以帮助制造业提高效率、降低成本、提高质量和创新能力。
三、人工智能如何应用?
主要应用于以下领域
1. 医疗保健:人工智能可以帮助医生进行疾病诊断、制定治疗方案、分析医学影像、预测疾病风险等。例如,通过深度学习技术进行的癌症筛查和病理切片分析。
2. 自动驾驶:人工智能技术在无人驾驶汽车中的应用包括环境感知、路径规划、决策制定等。这使得汽车能够在各种道路条件下自主行驶。
3. 语音识别和自然语言处理:这些技术被广泛应用于智能音箱、聊天机器人、语音助手等设备中,使人们可以通过语音与设备进行交互。
四、人工智能芯片如何应用?
人工智能芯片可以应用于各种领域,包括以下几个方面:
1. 机器学习:人工智能芯片可以加快训练和推理过程,提高机器学习模型的性能和效率。它们可以处理大量的数据并进行实时决策,能够在较短的时间内识别模式、学习规律,提供更准确的预测和分析。
2. 计算机视觉:人工智能芯片可以用于图像和视频处理。通过深度学习算法,芯片能够从图像和视频中提取特征、识别物体、实现目标检测、人脸识别等功能。这些应用包括安防监控、自动驾驶、医学影像分析等。
3. 自然语言处理:人工智能芯片可以处理和理解人类语言,包括语音识别、语义理解、机器翻译等任务。这些芯片可以用于智能助理、智能客服、语音识别输入等应用。
4. 机器人和自主系统:人工智能芯片可用于控制和管理机器人和自主系统。通过集成感知、决策和执行功能的芯片,机器人和自主系统可以感知周围环境、做出决策、执行任务,实现自主导航、智能控制等功能。
5. 联网设备和物联网:人工智能芯片可以嵌入到各种联网设备中,使其具备智能化的能力。通过与云端的联动,这些设备可以进行数据分析、智能控制,实现智能家居、智慧城市等应用。
总而言之,人工智能芯片在各个领域都有广泛的应用,能够为各种智能化系统和设备提供高效的处理能力和智能决策能力。
五、人工智能的应用前景如何?
人工智能的发展前景如何?
近年来,人工智能等科技教育在世界上掀起了一股狂澜,2019年教育部印发《2019年教育信息化和网络安全工作要点》,要求推动在中小学阶段设置人工智能相关课程,逐步推广编程教育。4月2日,教育部印发《关于实施全国中小学教师信息技术应用能力提升工程2.0的意见》,要求教师主动适应信息化、人工智能等技术变革,积极有效开展教育教学。
VR技术正逐步与5G、人工智能、大数据、裸眼3D、投影、全息投影等技术互相融合、互相促进发展。印度学校也将AR、人工智能和虚拟现实VR整合到教学中。在印度,有的学校现在已经将云计算,AR和虚拟现实VR结合到教学当中。 在过去的几年里,先进的科技应用已经改变了我们生活的方方面面。作为IT行业的领导者,印度一直站在这一技术的前沿,从银行业到政府管理、农业乃至日常购物和食品配送等领域的技术都得到了统一。
而美国自2010年起便开始布局STEM教育——即科学、技术、工程与数学教育,美国国内由13个机构组成了STEM教育委员会,通过改进学前至12年级教育方式、维持公众和青年的STEM接触效率、增加大学生STEM经历、优化STEM服务团体、设计STEM研究生教育等方面来促进并深化STEM教育改革。
那么,我们为何要大力推广大力推广人工智能等科技教育呢?
“科学”不仅是学校的一个科目,元素周期表,或者波的特性。它是一种认知世界的方法,是接触、探索与理解世界的关键方式。
在这个信息爆炸的时代,成功不仅取决于所学的知识,还与处理事物的方式有关。对我们的年轻一辈来说,用知识与技能去武装自己来处理信息,收集证据、解决目棘手问题已成为当务之急。而这些能力,都可以在他们的学生时代从科技学习中获得。
教育既是知识的传递,也是思维的传授;而科技教育密切贴合着时代的浪潮,在传输知识的同时更帮助学生以更新、更深、更全面的眼光去看待世界与面前的问题。
六、人工智能应用?
1、无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。
中国自主研制的无人车——由国防科技大学自主研制的红旗HQ3无人车,2011年7月14日首次完成了从长沙到武汉286公里的高速全程无人驾驶实验,创造了中国自主研制的无人车在一般交通状况下自主驾驶的新纪录,标志着中国无人车在环境识别、智能行为决策和控制等方面实现了新的技术突破。
2、智能音箱
智能音箱是传统有源音箱智能化升级的产物,是指具备智能语音交互系统、可接入内容服务以及互联网服务,同时可关联更多设备、实现对场景化智能家居控制的智能终端产品。智能音箱集成了人工智能处理能力,能够通过语音识别、语音合成、语义理解等技术完成语音交互。
智能音箱是智能家居的组成部分之一,智能音箱的功能延伸与智能家居产生了密切联系。如果把智能家居看作是一个智能生活系统的话,那智能音箱就是人工智能管家,是核心操控者。
3、人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
4、智能客服机器人
近年来智能机器人技术不断发展和成熟,智能机器人被应用于金融、财务、客服工作等领域,其中,智能机器人在客服工作中的应用效果最为显著。它通过自动客服、智能营销、内容导航、智能语音控制等功能提高了企业客服服务水平。
智能客服系统是在大规模知识处理基础上发展起来的一项面向行业应用的,适用大规模知识处理、自然语言理解、知识管理、自动问答系统、推理等等技术行业 。相较于传统人工客服,智能客服可以 7 X 24 小时在线服务,解答客户的问题、降低客服人力成本和提升用户网站活跃时长。
5、医学成像及处理
AI在快速医学影像成像方法、医学图像质量增强方法及医学成像智能化工作流图等方面均有突出表现。随着医学影像大数据时代的到来,使用计算机辅助诊断技术对医学影像信息进行进一步的智能化分析挖掘,以辅助医生解读医学影像,成为现代医学影像技术发展的重要需求。
七、大数据如何提升人工智能应用?
大数据为人工智能提供数据基础,包括量,质,数据种类全方位支持人工智能应用。经常会提到“好算法不如数据量大”,可见大数据量对人工智能作用之大。
大数据为人工智能应用提供分布式执行环境。这使人工智能应用直接运行在大数据集群上,数百台甚至数千数万台服务器为其提供庞大的算力。这使人工智能算法巨大cpu、内存需求得到解决。
大数据为人工智能提供算法基础库,可以直接使用这些算法库构建应用而无需自行开发算法。Apache spark mllib,Apache mahout,apache mxnet(深度学习)。可以说各种算法应有尽有。
八、在制造业领域人工智能技术已经开始应用广泛,修改句子?
首先,人工智能将大大提高生产效率和质量。在制造业领域,人工智能技术已经开始广泛应用,例如通过智能控制系统和自动化生产线,大幅提高了生产效率和产品质量,降低了人工成本和物料浪费。
其次,人工智能将改变医疗保健领域。AI技术已经开始应用于医学影像、疾病诊断和药物研发等方面,例如AI可以通过对大量医疗数据的分析,发现并预测一些疾病的早期症状,提高疾病的早期诊断率和治疗效果,同时还可以根据个人基因和生理特征,为患者提供个性化的治疗方案。
九、人工智能在制造业的应用案例
人工智能在制造业的应用案例
随着人工智能技术的不断发展,越来越多的制造企业开始将人工智能技术应用于生产流程中,以提高效率、降低成本、改善产品质量。以下是一些人工智能在制造业中的典型应用案例。
1. 智能机器人
智能机器人是人工智能技术在制造业中的一个重要应用领域。它可以通过视觉识别、运动规划和协作控制等技术,实现与人类的高效合作。在车间生产线上,智能机器人可以完成重复性高、简单的工作任务,例如装配零件、搬运物料等,大大提高了生产效率。
2. 智能质检
传统的质检过程通常需要大量的人力和时间,并且易受主观因素的影响。而借助人工智能技术,制造企业可以利用图像识别、机器学习等技术,实现自动化的质检过程。例如,通过对产品外观、尺寸等进行图像分析,系统可以快速、准确地判断产品是否合格,提高了质检效率。
3. 智能物流
人工智能技术在物流领域的应用也为制造业带来了很大的便利。通过物流数据的分析和预测,制造企业可以优化供应链、减少库存、降低物流成本。同时,智能物流系统还可以自动化调度、路径规划、货物跟踪等工作,提高物流效率。
4. 智能预测与维护
人工智能技术可以帮助制造企业实现设备故障的预测和维护。通过对设备运行数据的分析,系统可以提前预测设备故障,从而避免生产中断和损失。同时,智能预测与维护系统还可以帮助企业优化设备维修计划,降低维护成本。
以上只是人工智能在制造业中的一些典型应用案例,随着技术的不断进步,未来还将涌现更多的创新应用。借助人工智能技术,制造企业可以实现生产流程的智能化和自动化,提升竞争力和创新能力。
十、人工智能最早应用?
在热映电影《失控玩家》中,影片主角是电子游戏的人工智能NPC的自我意识觉醒,他爱上了来自现实世界的人类玩家,这个电影的上映,再次将人工智能和人类进行了一番对比,那么计算机究竟是如何发展起来的?
第一个给现代电子计算机设计出完整蓝图的人,并不是现代科学家,而是19世纪英国伟大的天才查尔斯·巴贝吉,这位来自9世纪初,大不列颠及北爱尔兰联合王国的数学,为一个多世纪后的学者在达特茅斯学院敲定了「人工智能」的名字和研究方向,为制造、农业和教育等领域的科技革命和产业变革带来了新的驱动力奠定了基础。