一、tpu应用领域?
TPU材料目前是工业领域用途广泛的高分子环保材料之一,的TPU材料具有其他高分子塑料材料所无法媲美的优势,它以其强度好、韧性佳、耐磨、防水防油、抗老化等多种优质特性被广泛应用于工业制造领域。下面本文将简单介绍一下受欢迎的TPU材料的应用范围:
1.鞋品制造
众所周知,挑选鞋子首要关注的就是舒适度和耐磨性。TPU材料具有良好的强度和韧性,防水耐磨,将其运用在鞋品制造上,能提高鞋品的舒适度和耐磨性,比其他塑性材料制造的鞋类产品优越得多。目前TPU材料主要用于鞋类产品制造领域,比如运动鞋、休闲鞋等。
2.薄膜
TPU材料作为一种防水防油的环保材料,它能够成为很多PVC材料的替代品,且能够与各种布料产品贴合。TPU材料支持真空热成型操作,能够制造轮廓清晰、尺寸稳定的产品。随着科技领域对TPU产品用途的深入研究,它的用途逐渐拓展,使其在保暖内衣、松紧带、医疗透气胶带等领域有重大突破。
3.胶黏剂
TPU材料还能制作成胶黏剂,值得相信的TPU材料在欧美一些制造领域将其作为胶黏剂使用已经十分普遍,尤其是作为鞋类产品胶黏剂。我国使用TPU材料制作的胶黏剂的方法是将其完全溶解后,加工处理后得到聚氨酯胶黏剂加以使用。
4.软管
由于TPU材料具有良好的韧性和强度,将其运用在软管制造方面能够保障良好的抗张强度和冲击性。且TPU材料具有防水耐磨的特性,将其制作为软管材料能够广泛运用在航空航天、汽车制造、军事等领域中的输气、输油等软管设施中。
TPU材料除了运用在鞋类、薄膜、胶黏剂以及软管等制造业方面,还逐渐运用在电线、滚轮、油墨等产品的制造方面。TPU材料用途广泛,质量好价格低的TPU材料也是其一大优势。可见TPU材料的广泛应用既能提高产品性能,还能大大节约制造材料成本。
二、人工智能处理器 TPU
随着人工智能技术的不断发展,对于人工智能处理器的需求也越来越迫切。传统的中央处理器(CPU)和图形处理器(GPU)在处理大规模人工智能任务时面临着效率和性能瓶颈,而专为人工智能设计的处理器,如Google推出的*人工智能处理器* TPU(张量处理器),正在成为人工智能领域的热门话题。
人工智能处理器的概念与发展
人工智能处理器是一种专门用于加速人工智能任务执行的硬件设备。与传统的CPU和GPU相比,人工智能处理器在处理神经网络、深度学习等人工智能任务时具有更高的效率和性能。
随着人工智能应用场景的不断扩大,人工智能处理器的发展也日益受到重视。Google推出的TPU处理器以其卓越的性能和高效的能耗管理,成为众多人工智能开发者和研究人员的首选。
TPU处理器的特点
TPU处理器作为一种专为人工智能任务而设计的处理器,具有以下几个显著特点:
- 专注于矩阵乘法运算,适用于深度学习等人工智能任务;
- 高效的并行计算能力,可以加速大规模人工智能任务的执行;
- 低能耗设计,使其在数据中心等大规模计算场景下具有更高的能效比。
人工智能处理器在人工智能领域的应用
随着人工智能技术在计算机视觉、自然语言处理、语音识别等领域的广泛应用,人工智能处理器的需求也在不断增加。TPU处理器在人工智能领域的应用体现在以下几个方面:
- 计算机视觉:在图像识别、物体检测等领域,TPU处理器能够加速神经网络的计算,提高视觉任务的处理速度和准确性;
- 自然语言处理:在语义分析、文本生成等任务中,TPU处理器能够高效处理大规模文本数据,提升自然语言处理任务的执行效率;
- 语音识别:应用于语音识别算法的TPU处理器能够提供快速的音频处理能力,实现实时语音识别等场景。
结语
人工智能处理器的发展将进一步推动人工智能技术的应用和创新。TPU处理器作为一种高效的人工智能处理器,将在人工智能领域发挥越来越重要的作用,助力人工智能技术的快速发展。
三、人工智能处理器tpu
人工智能处理器TPU:革命性技术的崛起
人工智能处理器TPU(张量处理单元)作为一种专门为人工智能任务而设计的处理器,近年来在科技行业掀起了一股革命性的浪潮。相比传统的中央处理器和图形处理器,TPU在处理大规模数据和深度学习任务时展现出了更高效、更快速的性能,为人工智能的发展带来了重大的影响和机遇。
TPU的崭新设计理念以及针对人工智能应用的专门优化,使其在处理神经网络等复杂模式识别任务时表现出色。相比之下,传统处理器在执行这类任务时往往效率低下,而图形处理器虽有一定的并行计算能力,却并非专为深度学习等应用而设计。
强大的TPU不仅在性能上有所突破,还在功耗和热量控制方面具备优势。由于人工智能任务常常需要大量数据以及高强度的计算,传统处理器和图形处理器在长时间运行时往往产生大量的热量,需要额外的散热设备。而TPU则通过更高效的计算架构,实现了更低的功耗和更少的热量输出,可为人工智能系统提供更稳定、持续的性能支持。
在人工智能处理器领域,谷歌的TPU凭借其卓越的性能和稳定性成为了业界的翘楚。谷歌自家的深度学习框架TensorFlow与TPU的紧密结合,使得大规模的机器学习任务得以高效运行,成为众多人工智能研究者和开发者的首选。
未来,随着人工智能技术的不断进步和应用领域的拓展,TPU和其他人工智能处理器必将发挥越来越重要的作用。在推动智能硬件发展的同时,也将加速人工智能技术在各个领域的落地和应用,助力实现智能时代的到来。
四、tpu?
尼龙作为一款工程塑料,由于具有优异的性能,被广泛应用于各种生活场景中。但是由于尼龙制件表面坚硬,在与人体接触的时候会有极差的体验感且容易划伤皮肤,因此在尼龙制件表面包覆一层软胶(软胶硬度选择邵氏40A-80A,以邵氏60A-70A最为常见),具有达到保护皮肤的目的,同时具有良好的触感体验,并且制件外观具有很好的设计灵活度,提升附加值。
对于尼龙包胶,更为常用的是采用物理包胶的方式,即通过卡扣设计、表面辊花、表面攻螺纹达到包覆尼龙制件的目的。但是这种方法会存在很大的弊端,在物理连接部位具有较强的附着力,在其它部位就不具有很强的附着力,容易造成脱落且设计自由度低。而化学包胶利用两种材质之间的分子亲和力、极性力或氢键力,达到包裹的效果。自然地,利用化学包胶使得每个部位贴合牢靠,同时赋予极大的设计自由度。
TPU作为弹性体,在力学性能以及耐磨、耐寒、耐油、耐水等方面具有一定的优势,同时它的极性与尼龙相差不大,因此常常被用作包尼龙的材料。但在实际使用过程中,常出现粘接性不好导致包胶脱落,影响制品使用寿命的问题。针对这一痛点,思立可为其提供了很好的解决方案,将Si-TPV®用于尼龙包胶不仅能在TPU的基础上提高力学性能以及耐磨、耐寒、耐油、耐水等特性,同时其优异的粘接性能也为尼龙包胶提供了延长使用寿命的保障。
为了评价Si-TPV®、TPU对尼龙的包胶能力,建立如下实验方法:
1.先将尼龙样注塑成长条板,按照国标调节样片,待用;
2.将长条板沿浇口方向斜着剪去一块,夹角为45°(为保证每块板接触面积一样,可用120目砂纸将硬塑剪切面打磨至平整均一);
3.将制好的长条板放回模具型腔内,选取合适的温度与压力,用软胶直接注塑;
4.取下尼龙与软胶的粘接体,二者若不能粘接上的,则认为不可粘接,能粘接上的,则按国标进行调节,待测;
5.将处理好的粘接体进行拉伸测试,得到二者分离所需的力,即为衡量包胶粘接性能的数值。
根据上述实验方法,在保证条件相同的的情况下,对比了Si-TPV®以及不同硬度TPU包胶PA6效果,结果如图所示:
综合来看,3525-65A作为TPU与硅橡胶的结合,在保留TPU的优势的情况下,硅橡胶赋予材料绝佳的表面触感,且能对常见尼龙产生很好的包胶效果,其包胶能力明显好于TPU,能够为尼龙包胶带来持久优异的包覆性能。
五、人工智能应用?
1、无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。
中国自主研制的无人车——由国防科技大学自主研制的红旗HQ3无人车,2011年7月14日首次完成了从长沙到武汉286公里的高速全程无人驾驶实验,创造了中国自主研制的无人车在一般交通状况下自主驾驶的新纪录,标志着中国无人车在环境识别、智能行为决策和控制等方面实现了新的技术突破。
2、智能音箱
智能音箱是传统有源音箱智能化升级的产物,是指具备智能语音交互系统、可接入内容服务以及互联网服务,同时可关联更多设备、实现对场景化智能家居控制的智能终端产品。智能音箱集成了人工智能处理能力,能够通过语音识别、语音合成、语义理解等技术完成语音交互。
智能音箱是智能家居的组成部分之一,智能音箱的功能延伸与智能家居产生了密切联系。如果把智能家居看作是一个智能生活系统的话,那智能音箱就是人工智能管家,是核心操控者。
3、人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
4、智能客服机器人
近年来智能机器人技术不断发展和成熟,智能机器人被应用于金融、财务、客服工作等领域,其中,智能机器人在客服工作中的应用效果最为显著。它通过自动客服、智能营销、内容导航、智能语音控制等功能提高了企业客服服务水平。
智能客服系统是在大规模知识处理基础上发展起来的一项面向行业应用的,适用大规模知识处理、自然语言理解、知识管理、自动问答系统、推理等等技术行业 。相较于传统人工客服,智能客服可以 7 X 24 小时在线服务,解答客户的问题、降低客服人力成本和提升用户网站活跃时长。
5、医学成像及处理
AI在快速医学影像成像方法、医学图像质量增强方法及医学成像智能化工作流图等方面均有突出表现。随着医学影像大数据时代的到来,使用计算机辅助诊断技术对医学影像信息进行进一步的智能化分析挖掘,以辅助医生解读医学影像,成为现代医学影像技术发展的重要需求。
六、tpu主要应用于哪些领域?
TPU的主要运用领域为
日用品、体育用品、装饰材料等
热塑性聚氨酯弹性体橡胶。主要分为聚酯型和聚醚型,它硬度范围宽(60HA-85HD)、耐磨、耐油,透明,弹性好,在日用品、体育用品、玩具、装饰材料等领域得到广泛应用,无卤阻燃TPU还可以代替软质PVC以满足越来越多领域的环保要求。
七、人工智能如何应用?
主要应用于以下领域
1. 医疗保健:人工智能可以帮助医生进行疾病诊断、制定治疗方案、分析医学影像、预测疾病风险等。例如,通过深度学习技术进行的癌症筛查和病理切片分析。
2. 自动驾驶:人工智能技术在无人驾驶汽车中的应用包括环境感知、路径规划、决策制定等。这使得汽车能够在各种道路条件下自主行驶。
3. 语音识别和自然语言处理:这些技术被广泛应用于智能音箱、聊天机器人、语音助手等设备中,使人们可以通过语音与设备进行交互。
八、人工智能最早应用?
在热映电影《失控玩家》中,影片主角是电子游戏的人工智能NPC的自我意识觉醒,他爱上了来自现实世界的人类玩家,这个电影的上映,再次将人工智能和人类进行了一番对比,那么计算机究竟是如何发展起来的?
第一个给现代电子计算机设计出完整蓝图的人,并不是现代科学家,而是19世纪英国伟大的天才查尔斯·巴贝吉,这位来自9世纪初,大不列颠及北爱尔兰联合王国的数学,为一个多世纪后的学者在达特茅斯学院敲定了「人工智能」的名字和研究方向,为制造、农业和教育等领域的科技革命和产业变革带来了新的驱动力奠定了基础。
九、人工智能应用基础?
知识是人类智能的基础,人类在从事阶级斗争、生产斗争和科学试验等社会实践活动中,其智能活动过程主要是一个获取知识并运用知识的过程。
人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的。
如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。
在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。人们所涉及的知识也是十分广泛的,例如,有的知识是多数人所熟悉的普通知识,而有的知识只是有关专家才掌握的专门领域知识。那么,到底什么是知识?知识有哪些特性?它与通常所说的信息有什么区别和联系?
现实世界中每时每刻都产生着大量的信息,但信息是需要用一定的形式表示出来才能被记载和传递的。尤其是使用计算机来进行信息的存储及处理时,更需要用一组符号及其组合进行表示。像这样用一组符号及其组合表示的信息称为数据。
数据与信息是两个密切相关的概念。数据是记录信息的符号,是信息的载体和表示。信息是对数据的解释,是数据在特定场合下的具体含义。只有把两者密切地结合起来,才能实现对现实世界中某一具体事物的描述。
另外,数据和信息又是两个不同的概念,相同的数据在不同的环境下表示不同的含义,蕴涵不同的信息。比如,“100”是一个数据,它可能表示“100元钱”,也可表示“100个人”,若对于学生的考试成绩来说,可能表示“100分”。同样,相同的信息也可以用不同的数据表示出来。比如,地下工作者为了传达情报信息,可以用一首诗词的每一句的第一个字组成一句话,或诗的斜对角线上的字组成的一句话来传达信息,也可能会用一个代码或数字来表示同一信息。
正如上述,现实生活中,信息是要以数据的形式来表达和传递的,数据中蕴涵着信息,然而,并不是所有的数据中都蕴涵着信息,而是只有那些有格式的数据才有意义。对数据中的信息的理解也是主观的、因人而异的,是以增加知识为目的的。
人工智能的基本概念有几方面
对于人工智能,很多人并不了解,我也如此。关于这个问题,我与我的朋友人工智能工程师张
十、人工智能的应用?
1. 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的Google X实验室正在积极研发无人驾驶汽车Google Driverless Car,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
2. 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
3. 机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(Neural Machine Translation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
4. 声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
5. 智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
6. 智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
7. 智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(Automatic Speech Recognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(Natural Language Processing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(Text To Speech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
8. 个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
9. 医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10. 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。