一、人工智能在历史研究中的用途?
1、人工智能能够快速分析处理大量的文献资料
研究历史最为重要的就是古物的研究,而古书又是占了大头。但是,研究古书却是一件令人非常头疼的事情,尤其是初学者,面对浩如烟海的古籍往往无从下手,而没有了古籍作为自己研究的第一手资料,那么所有的科学研究也无法着手。
而要是把这项繁琐的工作交给人工智能,通过大数据分析处理得出有用的结论,就能够为广大的历史工作中省去大量的时间成本,可以从事更多复杂的,更多有创新价值的研究,这样无疑会加速历史研究的发展。
2、人工智能是技术辅助手段,并不是要完全依靠人工智能。
历史作为一门重要的人文学科,很多人认为人工智能无法参与这项领域,但是我却不认为是这样的。人工智能技术终究其本质也是数据的分析处理,所以它只能够作为是研究历史的手段,而这种技术历史研究也在一直使用。就比如用统计学的方法来研究历史,研究历史的经济领域的发展,研究不同朝代的人口变迁,这些都是处理了大量的原始数据而得到的。
要是有了人工智能,人们可以依靠这项技术从大量的数据中轻松的解脱出来,即使不能够得出一些肯定性的结论,但是能够帮助进行分析处理也是非常有用的。
3、人工智能是历史发展的必然趋势。
人工智能的发展就像是从手工业到工业再到现在的互联网产业,一步一步的发展。人工智能很可能就是我们历史发展的下一个阶段,以前人研究历史依靠的是一个一个人进行查阅古籍进行资料整理,现在的历史学家研究历史,不仅仅采用这种方式,还能够使用更为先进的方式,比如说通过互联网进行资料的查阅,对相关数据的处理,科技发展就是历史发展的必然趋势,这也是所有的历史学家所认同的东西。
所以说,用人工智能研究历史也不过就是给历史研究提供一个新的思路而已,并不会完全取代历史学家。
对于一项新的技术,我认为我们首先要做的就是拥抱它,多给新技术留下一些实验的空间,通过不断地试错,为我们地后续研究提供更多的可能性。我认为这也是历史研究的终极意义吧。
二、人工智能的历史答案?
一、孕育期
1.1943年 Warren McCulloch和Walter Pitts利用三种资源:基础生理学知识和脑神经元的功能、罗素和怀特海德对命题逻辑的形势分析、图灵的计算理论,提出了人工神经元模型。
2.1949年Donald Hebb提出用于修改神经元之间的连接强度的更新规则,即赫布型学习。
3.1950年Marvin Minsky和Dean Edmonds建造了第一台神经网络计算机SNARC,使用3000个真空管和自动指示装置模拟40个神经元构成的网络。
4.1950年阿兰.图灵提出图灵测试、机器学习、遗传算法和强化学习。
5.1952年阿瑟.萨穆尔的西洋跳棋程序,可以通过学习达到业余高手的水平,
二、诞生
1956年约翰.麦卡锡(john McCarthy)等人召开了达特茅斯研讨会,标志着人工智能的诞生。
此后20年,人工智能领域被这10个人以及他们所在的MIT、CMU、斯坦福和IBM的学生和同事支配了。
1.艾伦.纽厄尔和赫伯特.西蒙推出了一个推理程序'逻辑理论家',能证明罗素和怀特海德的《数学原理》。
2.1958年麦卡锡定义了长期霸占人工智能编程统治地位的Lisp语言,发明了分时技术、提出了'有常识的程序'。
后者被认为是第一个完整的人工智能系统。
3.明斯基指导学生研究求解需要智能的有限问题,这些有限域称为微观世界,比如积木世界。
这直接引发了1970年学习理论、1971年的视觉项目、1972年的自然语言理解程序、1974年的规划器、1975年的视觉与约束传播工作、
4.1962年Frank Rosenblatt用感知机加强了赫布的学习方法。Block等也提出了感知机收敛定理。
5.1969年Bryson和Ho首次提出反向传播算法。
三、第一次低谷(1974-1980)
1. 由于准确的翻译需要背景知识来消除歧义并建立句子的内容,导致机器翻译迟迟没有进展。
2.微观世界能求解的问题,放大之后迟迟没有任何进展。
3.感知机被嘲讽无法解决最简单的异或问题,导致神经网络几乎销声匿迹。
四、第二次兴起(1980-1987):专家系统的流行
1.1969年Buchanan等开发了第一个成功的知识密集系统DENDRAL,引发了专家系统的研究。
2.1982年第一个成功的商用专家系统RI在数据设备公司(DEC)运转,该程序帮助为新计算机系统配置订单,到1986年为公司节省了4000万美元。
这个期间几乎每个主要的美国公司都正在使用或者研究专家系统。
五、第二次AI寒冬1987-1995
1.XCON等最初大获成功的专家系统维护费用居高不下。
2.专家系统的实用性仅仅局限于某些特定情景。
3.1981年日本提出的'第五代计算机',以研制运行Prolog语言的智能计算,始终无法实现。
4.美国AI研究计划中的芯片设计和人机接口研究始终无法实现目标。
六、第三次兴起(1995-现在)
三、人工智能的研究意义?
对于人工智能的研究,可以帮助我们找准人类对于自身的定位。就目前来说,人类是地球上最高形态的智慧存在,但对于整个宇宙来说,其实是不确定的,相对于未来未知的情况,就更加不确定。
人类在研究人工智能时,总是希望研究的目的成为最终的结果。从而达到对自己有利的目的。而事物的发展也不总是如我们自己所愿。从整个生命进化来看,人类并不一定是生命进化的最终形态。
如果这一点成立,那么我们研究人工智能,很可能就是告诉我们人类不要狂妄自大,人这样一种生命存在的形态,并非是生命进化的终极层次。
四、人工智能的发展历史?
人工智能最早的探索也许可以追溯到莱布尼茨,他试图制造能够进行自动符号计算的机器,但现代意义上人工智能这个术语诞生于1956年的达特茅斯会议。
黄金时期(1956-1974)
这是人工智能的一个黄金时期,大量的资金用于支持这个学科的研究和发展。这一时期有影响力的研究包括通用问题求解器(General Problem Solver),以及最早的聊天机器人ELIZA。
第一次寒冬(1974-1980)
到了这一时期,之前的断言并没有兑现,因此各种批评之声涌现出来,国家(美国)也不再投入更多经费,人工智能进入第一次寒冬。
兴盛期(1980-1989
这一时期的兴盛得益于专家系统的流行。联结主义的神经网络也有所发展,包括1982年John Hopfield提出了Hopfield网络,以及同时期发现的反向传播算法,但主流的方法还是基于符号主义的专家系统。
第二次寒冬(1989-1993)
之前成功的专家系统由于成本太高以及其它的原因,商业上很难获得成功,人工智能再次进入寒冬期。
发展期(1993-2006)
这一期间人工智能的主流是机器学习。统计学习理论的发展和SVM这些工具的流行,使得机器学习进入稳步发展的时期。
爆发期(2006-现在)
这一次人工智能的发展主要是由深度学习,也就是深度神经网络带动的。
五、人工智能的研究内容?
人工智能的研究内容如下的:
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
扩展资料
智能模拟:机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。
学科范畴:人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。
涉及学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
六、人工智能的研究策略?
其一是功能模拟学派。
这又称为符号主义学派,主张从功能方面模拟、延伸、扩展人的智能。认为人脑和电脑都是物理符合系统,其代表性成果有专家系统、知识工程、启发式程序得等等。
其二是结构模拟学派。
又被称之为联系结主义学派。主张从结构方面模拟、延伸、扩展,人的智能,,要用电脑模拟人脑的神经系统联合机制,其代表性成果有M-P神经细胞模型,BP神经网络模型,Hopfield神经网络模型等等。
其三是行为模拟学派。
又被称为行为主义学派,主张从行为方面模拟、延伸、扩展人的智能,认为智能可以不需要知识。代表性成果有MIT的Brooks研制的智能机器人
七、人工智能的发展历史答案?
一、孕育期
1.1943年 Warren McCulloch和Walter Pitts利用三种资源:基础生理学知识和脑神经元的功能、罗素和怀特海德对命题逻辑的形势分析、图灵的计算理论,提出了人工神经元模型。
2.1949年Donald Hebb提出用于修改神经元之间的连接强度的更新规则,即赫布型学习。
3.1950年Marvin Minsky和Dean Edmonds建造了第一台神经网络计算机SNARC,使用3000个真空管和自动指示装置模拟40个神经元构成的网络。
4.1950年阿兰.图灵提出图灵测试、机器学习、遗传算法和强化学习。
5.1952年阿瑟.萨穆尔的西洋跳棋程序,可以通过学习达到业余高手的水平。
二、诞生
1956年约翰.麦卡锡(john McCarthy)等人召开了达特茅斯研讨会,标志着人工智能的诞生。
此后20年,人工智能领域被这10个人以及他们所在的MIT、CMU、斯坦福和IBM的学生和同事支配了。
1.艾伦.纽厄尔和赫伯特.西蒙推出了一个推理程序'逻辑理论家',能证明罗素和怀特海德的《数学原理》。
2.1958年麦卡锡定义了长期霸占人工智能编程统治地位的Lisp语言,发明了分时技术、提出了'有常识的程序'。
后者被认为是第一个完整的人工智能系统。
3.明斯基指导学生研究求解需要智能的有限问题,这些有限域称为微观世界,比如积木世界。
这直接引发了1970年学习理论、1971年的视觉项目、1972年的自然语言理解程序、1974年的规划器、1975年的视觉与约束传播工作、
4.1962年Frank Rosenblatt用感知机加强了赫布的学习方法。Block等也提出了感知机收敛定理。
5.1969年Bryson和Ho首次提出反向传播算法。
三、第一次低谷(1974-1980)
1. 由于准确的翻译需要背景知识来消除歧义并建立句子的内容,导致机器翻译迟迟没有进展。
2.微观世界能求解的问题,放大之后迟迟没有任何进展。
3.感知机被嘲讽无法解决最简单的异或问题,导致神经网络几乎销声匿迹。
四、第二次兴起(1980-1987):专家系统的流行
1.1969年Buchanan等开发了第一个成功的知识密集系统DENDRAL,引发了专家系统的研究。
2.1982年第一个成功的商用专家系统RI在数据设备公司(DEC)运转,该程序帮助为新计算机系统配置订单,到1986年为公司节省了4000万美元。
这个期间几乎每个主要的美国公司都正在使用或者研究专家系统。
五、第二次AI寒冬1987-1995
1.XCON等最初大获成功的专家系统维护费用居高不下。
2.专家系统的实用性仅仅局限于某些特定情景。
3.1981年日本提出的'第五代计算机',以研制运行Prolog语言的智能计算,始终无法实现。
4.美国AI研究计划中的芯片设计和人机接口研究始终无法实现目标。
六、第三次兴起(1995-现在)
八、人工智能的历史背景?
人工智能的起源
由麦卡赛、明斯基、罗切斯特和申农等为首的一批具有长远眼光的科学家与1956年的夏天提出。并首次提出“人工智能”这一个在今天成为主流的词汇。
当初人工智能并不被许多人所认可,更是被所谓的“先知者”冷言冷语,也有人在一旁冷眼旁观。当然,这种现象与无可厚非,毕竟新事物的诞生,往往会有一批旧事物的消逝,这就必然存在有一个争斗、优胜劣汰的过程。这也是人类一个特点:喜欢待在舒适区,害怕变动。要说人工智能的拉票之举,不得不说到战胜人类的世界国际象棋冠军这个事了;人工智能在这一次的比拼中,完美地展现了他的优越性与未来的可发展性。
人工智能的起源,才有了他的发展,以及在今天与我们的息息相关。这是一个伟大的诞生。
一、人工智能的发展
人工智能自1956年诞生并得到一个完美的展现后,得到了一个长足的发展;发展成了一门交叉科学,并且融入了各个领域,涉及到了各行各业。悄然改变着我们的生活方式和我们的生活习惯。我们今天的生活便利,如果你深入了解过,你会发现。他们的改变,离不开人工智能。
二、人工智能与我们的生活
其实人工智能并不神秘,我们没必要把它束之高阁。我们人手一个的智能手机,其内的语音操作功能,其实就是人工智能。再比如说,我们所熟知的天猫精灵,小米智能音箱等,再许多的寻常百姓家中,也可以见到他们的身影。
再高端一点的话,那就是互联网智能家电了,再许多的电器公司中,都在致力于他们的研究与生产,比如小米旗下的云米,就是一个从事全屋互联网家电的公司。
九、创造历史和研究历史的区别?
创造历史,是指开天辟地第一次,研究历史是指后人研究前人的成果,例如,瓦特发明了蒸汽机,开启了蒸汽时代。满洲努尔哈赤创立了八旗制度一样。这就属于创造历史。而研究历史不一样。比如说,那些红学家,就是以研究《红楼梦》为职业。这就是研究历史。
十、历史年表研究历史的优缺点?
历史纪年表记录了历史上的大事件及发生时间,是我们了解历史的向导